Author: Kashikhin, V.V.
Paper Title Page
TUPFI061 Preliminary Design of a Higgs Factory μ+μ- Storage Ring 1487
 
  • A.V. Zlobin, Y.I. Alexahin, V.V. Kapin, V.V. Kashikhin, N.V. Mokhov, I.S. Tropin
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, and by the US Department of Energy through the Muon Accelerator Program (MAP).
A Muon Collider offers unique possibilities for studying the recently found Higgs boson. Higgs bosons can be produced in reasonable amounts in the s-channel, so that the colliding muon beam energy of just 62.5GeV is required. Precision direct measurements of the Higgs boson mass and width is possible due to absence of brems- and beam-strahlung. At the same time, there are difficulties specific to muon colliders: relatively large beam emittance which necessitates quite small beta-function values (~ a few cm) at the interaction point in order to obtain sufficiently high luminosity, as well as superconducting magnet and detector protection from showers generated by muon decay products. Due to these factors, the required aperture of the final focus quadrupoles is very large (up to 0.5 m) posing challenging engineering constraints as well as beam dynamics issues with fringe fields. The first results of a complex approach to these problems in the Higgs Factory collider design are presented which promise luminosities in excess of 1031 cm-2s−1 with a 4 MW proton driver.
 
 
THPME045 TEST RESULTS OF A NB3SN QUADRUPOLE COIL IMPREGNATED WITH RADIATION-RESISTANT MATRIMID 5292 3612
 
  • A.V. Zlobin, G. Ambrosio, N. Andreev, E.Z. Barzi, R. Bossert, G. Chlachidze, V.V. Kashikhin, S. Krave, A. Nobrega, I. Novitski
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
FNAL is developing advanced Nb3Sn magnets for present and future accelerators. Insulation is one of the primary elements of magnet design, essential for maintaining its electrical, mechanical and thermal performance. The Nb3Sn magnet fabrication process involves coil reaction at high temperature and then impregnation with epoxy to restore the insulation electrical and mechanical properties. The traditional epoxy offers adequate structural and electrical properties, but has a low radiation strength which limits the lifetime of accelerator magnets operating in severe radiation environments. Studies to replace epoxy as impregnation material for Nb3Sn coils with high radiation-resistant material have started at FNAL ten years ago. The studies concentrated on the Matrimid® 5292, a bismaleimide based material, which has appropriate viscosity and potlife as well as provides excellent mechanical, electrical and thermal coil properties. A 1 m long Nb3Sn quadrupole coil was recently fabricated, impregnated with Matrimid and tested in a quadrupole magnetic mirror at 4.2 and 1.9 K. Coil test results are presented and compared to the results for similar coils impregnated with epoxy.