Author: Karnaev, S.E.
Paper Title Page
MOPEA053 Status of NSLS-II Booster 196
 
  • S.M. Gurov, A.I. Erokhin, S.E. Karnaev, V.A. Kiselev, E.B. Levichev, A. Polyansky, A.M. Semenov, S.V. Shiyankov, S.V. Sinyatkin, V.V. Smaluk
    BINP SB RAS, Novosibirsk, Russia
  • H.-C. Hseuh, T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II is a third generation light source under construction at Brookhaven National Laboratory. The project includes a highly optimized 3 GeV electron storage ring, linac pre-injector and full-energy injector-synchrotron. Budker Institute of Nuclear Physics build booster for NSLS-II. The booster should accelerate the electron beam continuously and reliably from a minimum 170 MeV injection energy to a maximum energy of 3.15 GeV and average beam current of 20 mA. The booster shall be capable of multi-bunch and single bunch operation. Pre-comissioning test results of booster components and system are reviewed.  
 
THPEA032 Software for Power Supplies Control of the NSLS-II Booster Synchrotron 3213
 
  • P.B. Cheblakov, A.A. Derbenev, S.E. Karnaev, S.S. Serednyakov
    BINP SB RAS, Novosibirsk, Russia
  • M.A. Davidsaver, Y. Tian
    BNL, Upton, Long Island, New York, USA
 
  The booster synchrotron of the NSLS-II light source at Brookhaven National Laboratory (BNL) provides electron beam acceleration from 200 MeV up to 3 GeV in 300 ms. This imposes strict conditions on both accuracy of control and synchronization of ramping Power Supplies (PS). Hardware part of PS controls are based on electronics specially developed at BNL and includes Power Supply Controllers (PSC) and Power Supply Interfaces (PSI). The former represents digital part of hardware and implements low-level logic (generating ramp functions, simple data verification and data acquisition), communication with control system software and PSI. The latter is an analogue part of entire system and it performs generation and acquisition analogue and digital signals by a set of on-board DACs, ADCs and digital inputs/outputs. The PSC and the PSI are connected by digital fibre optic link for electrical decoupling. This paper describes software for the booster synchrotron PSs control which is based on EPICS and includes a specially designed electronics configuration, a set of programs to manage ramp functions and to control different types of power supplies, both pulsed and ramping.  
 
THPEA063 NSLS II Injector Integrated Testing 3285
 
  • G.M. Wang, B. Bacha, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, R.P. Fliller, W. Guo, K. Ha, H.-C. Hseuh, Y. Hu, W. Louie, M.A. Maggipinto, D. Padrazo, T.V. Shaftan, G. Shen, O. Singh, Y. Tian, K. Vetter, F.J. Willeke, H. Xu, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
  • P.B. Cheblakov, A.A. Derbenev, A.I. Erokhin, S.M. Gurov, R.A. Kadyrov, S.E. Karnaev, E.A. Simonov, S.V. Sinyatkin, V. Smalyuk
    BINP SB RAS, Novosibirsk, Russia
 
  The NSLS-II is a state of the art 3 GeV synchrotron light source under construction at Brookhaven National Laboratory. Since 2012, the injector system gradually moves to the commissioning stage. It occurs after group people efforts on optics design, equipment specifications, construction and tests, assembly, installation and alignment. It is very important and exciting. To make the commissioning smooth and efficient, an important effort was put on the sub-system integration test to make sure the device function along with utility, timing system and control system, to calibrate diagnostics system and to debug high level application with simulated beam signals and required hardware. In this paper, we report our integration test experience and related control system software development.