Author: Jung, H.C.
Paper Title Page
WEPWO039 Prototyping of TEM-like Mode Resonators in the RAON 2384
 
  • H.C. Jung, M.O. Hyun, D. Jeon, H.J. Kim
    IBS, Daejeon, Republic of Korea
 
  Preliminary electric-magnetic designs of TEM-like mode resonators(a quarter wave resonator, a half wave resonator, two single spoke resonators) are accomplished for the superconducting linear accelerator in the RAON. Resonant cavities are numerically optimized using a CST MWS code to obtain higher E-field gradient along the beam line in conditions of the peak E-field and B-field is less than 30MV/m, 60mT respectively. Prototyping test of a quater wave resonator of optimum beta 0.047 using OFC(Oxygen Free Cupper)is in progress to analyze resonant frequency shifting by tolerances in fabrication process and external perturbations. It is compared with expected one using compuational codes.  
 
WEPWO040 Design of HWR at RISP 2387
 
  • G.-T. Park, H.J. Cha, H.C. Jung
    IBS, Daejeon, Republic of Korea
 
  At RISP, superconducting cavity resonators to accelerate the various ions in high current are being developed. In particular, hal-wave resonator (HWR) will be used for β=0.12, f=162.5 MHz. Here we present the structural analysis of HWR, which includes the prediction of resonant frequency shift during the manufacturing and testing process, stiffening measures to minimize the shift, and the tuning mechanism. The processes of welding, polishing, vacuuming, cooling (to crygenic temperature)as well as Lorentz force, helium pressure fluctuation, microphonics, and interaction with the helium vessel and tuning system will be simulated optimizing the frequency shift.  
 
THPWO063 The Early Stage of the Cavity Fabrication Process (ECT and furnace) for RAON 3901
 
  • M.J. Joung, H.C. Jung, H.J. Kim
    IBS, Daejeon, Republic of Korea
 
  RAON is consist of three part about the acceleration line. These are SCL1, SCL2 and SCL3. SCL1 and SCL3 will be made from QWR (Qarter Wave Resonator) and HWR (Half Wave Resonator). And SCL2 will be made from SSR1 (Single Spoke Resonator) and SSR2 (Single Spoke Resonator). Accordingly, The RAON needs 48 QWR, 276 HWR, 88 SSR1 and 136 SSR2 to get the performance that we want. To accelerate the particle using lots of cavity, we have to make a process of cavity fabrication for RAON. We will compare to each process made from the other laboratories and to make the optimal process for RAON to get the performance that we want. And that process will consider the type of cavity and the purpose of the accelerator. I will introduce the early stage of the cavity fabrication process for RAON in this paper.  
 
THPWO064 Superconducting Linac for the Rare Isotope Science Project 3903
 
  • H.J. Kim, H.J. Cha, M.O. Hyun, H.J. Jang, D. Jeon, J.D. Joo, M.J. Joung, H.C. Jung, Y.C. Jung, Y. Kim, M. Lee, G.-T. Park
    IBS, Daejeon, Republic of Korea
 
  Abstract The RISP (Rare Isotope Science Project) accelerator has been planned to study heavy ion of nuclear, material and medical science at the Institute for Basic Science (IBS). It can deliver ions from proton to Uranium. The facility consists of three superconducting linacs of which superconducting cavities are independently phased and operating at three different frequencies, namely 81.25, 162.5 and 325 MHz. Requirement of the linac design is especially high for acceleration of multiple charge beams. In this paper, we present the RISP linac design, the superconducting cavity and the requirements of beam diagnosics.