Author: Jovanovic, I.
Paper Title Page
TUPEA089 Modeling and Experimental Update on Quasi-phase Matched Direct Laser Electron Acceleration In Density-modulated Plasma Waveguides 1325
 
  • M.W. Lin, D.R. Abercrombie, I. Jovanovic, A. Rakhman
    Penn State University, University Park, Pennsylvania, USA
 
  Funding: This work has been supported by the Defense Threat Reduction Agency through Contract HDTRA1-11-1-0009.
Direct laser acceleration (DLA) of electrons using the axial electric field of a radially polarized, guided intense laser pulse has the potential to lead to compact laser-driven accelerators* for security and medical applications. A density-modulated plasma waveguide could be applied to extend the laser beam propagation distance and to achieve quasi-phase matching (QPM) between laser and electron pulses for efficient DLA**. We conduct numerical simulations to design the appropriate plasma structure of the waveguides and investigate the properties of accelerated electron beams. An all-optical method, based on the igniter-heater scheme for plasma waveguide fabrication, is experimentally implemented to machine the density-modulated plasma waveguides with low-Z gas targets. A novel angle-multiplexed diagnostic technique has been developed to extract the polarization state and temporal characteristics of a radially polarized femtosecond laser pulse using spatial-spectral interferometry***. The goal of our experiments is to characterize the propagation of femtosecond radially polarized pulses in plasma waveguides.
* P. Serafim, et al., IEEE Trans. Plasma Sci. 28, 1155 (2000).
** M. -W. Lin and I. Jovanovic, Phys. Plasmas 19, 113104 (2012).
***P. Bowlan, et al., Opt. Exp. 14, 11892 (2006)
 
 
WEPME063 Progress Report on Development of a 5-μm Drive Laser for Dielectric Laser Acceleration 3079
 
  • G. Xu, I. Jovanovic, S.F. Wandel
    Penn State University, University Park, Pennsylvania, USA
  • E.R. Arab
    PBPL, Los Angeles, USA
  • P.D. Hoang, P. Musumeci, B.D. O'Shea, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • A.Y. Murokh, A.G. Ovodenko
    RadiaBeam, Santa Monica, USA
  • I. Pogorelsky
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work has been sponsored by Defense Advanced Research Project Agency.
A simple and robust ultrafast, high-peak-power 5-μm laser source for pumping a dielectric photonic structure for high-gradient electron acceleration has been designed and is being constructed. The use of long wavelength drive lasers can mitigate the problem of dielectric structure breakdown caused by multiphoton ionization. In addition, structure fabrication requirements are relaxed, and greater energy can be stored in the structure. The 5-μm laser source consists of two components: (1) a type-II-beta-barium borate-based 2-μm optical parametric amplifier (OPA) as a pump source, and (2) a type-I-zinc-germaniu-phosphate-based 5-μm OPA to produce mJ-class, <100 fs pulses. Our supercontinuum seeded two-stage 2-μm OPA is pumped by a Ti:sapphire amplifier and produces pulse energy of ~1.4 mJ with a pulse duration of 42 fs (~6 optical cycles). Carrier-envelope phase (CEP) stabilization is passively established for 2 μm pulses in our OPA design. An modified design of seed pulse generation for the 5-μm OPA based on several cascaded parametric processes can also result in CEP-stable operation for 5-μm amplified pulses.