Author: Johansson, A.J.
Paper Title Page
WEPME040 Investigation to Reduce Power Overhead Required in Superconducting RF Cavity Field Control 3013
 
  • R. Zeng, S. Molloy, A. Sunesson
    ESS, Lund, Sweden
  • A.J. Johansson
    Lund University, Lund, Sweden
 
  A power overhead of more than 25% is usually required in RF field control of klystron drived superconducting cavity, since it is much easier to implement feild control in a linear region of klystron where it is far below saturation. It however results in a reduced efficiency and more power consumption. Within ESS project it places very high demands on energy efficiency, which leads to stringent requirements on power overhead required in RF field control. Investigation on power overhead reduction in RF field control has been carried out at ESS and related simulation has been done. In this paper we will look at how close we can implement field control to the klystron saturation and discuss if it is possible to make RF field control the RF field with 10% overhead.  
 
THPFI042 Design Considerations for Phase Reference Distribution System at ESS 3379
 
  • R. Zeng
    ESS, Lund, Sweden
  • A.J. Johansson
    Lund University, Lund, Sweden
 
  PRDS (Phase Reference Distribution System) will be serving as the phase alignment line for all cavities with high phase stability. With the current design of individually RF source powering for most cavities at ESS, phase reference distribution system should provide the reference signals for totally 34 LLRF systems at 100 meters long low-frequency section (for all 352.21MHz cavities, including RFQ, DTL, bunching cavities and spokes), and for totally 180 LLRF systems at 342 meters long high-frequency section (for all 704.42MHz cavities, including medium beta and high beta elliptical cavities). Coaxial cable based solution and optical fibre based solution are discussed in this note for PRDS (Phase reference distribution system) at ESS. Some possible schemes in each of these two distribution solutions are introduced and comparisons among these schemes are made. Some effort is made as well to find out a reasonable design for PRDS at ESS.