Author: Jankowiak, A.
Paper Title Page
MOPFI002 Results from Beam Commissioning of an SRF Plug-gun Cavity Photoinjector 282
  • M. Schmeißer, R. Barday, A. Burrill, A. Jankowiak, T. Kamps, J. Knobloch, O. Kugeler, P. Lauinger, A. Neumann, J. Völker
    HZB, Berlin, Germany
  • P. Kneisel
    JLAB, Newport News, Virginia, USA
  • R. Nietubyć
    NCBJ, Świerk/Otwock, Poland
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
  • I. Will
    MBI, Berlin, Germany
  Superconducting rf photoelectron injectors (SRF guns) hold the promise to deliver high brightness, high average current electron beam for future lightsources or other applications demanding continuous wave operation of an electron injector. This paper discusses results from beam commissioning of a hybrid Pb coated plug-gun Nb cavity based SRF photoinjector for beam energies up to 3 MeV at Helmholtz-Zentrum Berlin. Emittance measurements and transverse phase space characterization with solenoid-scan and pepperpot methods will be presented.  
MOPFI004 The Injector Layout of BERLinPro 288
  • B.C. Kuske, M. Abo-Bakr, V. Dürr, A. Jankowiak, T. Kamps, J. Knobloch, P. Kuske, S. Wesch
    HZB, Berlin, Germany
  Funding: The Bundesministerium für Bildung und Forschung (BMBF) and the state of Berlin, Germany.
BERLinPro is an Energy Recovery Linac Project running since 2011 at the HZB in Berlin. The key component of the project is the 100mA superconducting RF photocathode gun under development at the HZB since 2010. Starting in 2016 the injector will go into operation providing 6 MeV electrons with an emittance well below 1mm mrad and bunches shorter than 4ps. 2017 the 50MeV linac will be set up and full recirculation is planned for 2018. The injector design including a dogleg merger has been finalized and is described in detail in this paper. Emphasis is laid on the final layout including collimators and diagnostics and performance simulations of two different gun cavities and first tolerance studies.
WEOAB101 Single Particle Tracking for Simultaneous Long and Short Electron Bunches in the BESSY II Storage Ring 2038
  • M. Ruprecht, A. Jankowiak, A. Neumann, M. Ries, G. Wüstefeld
    HZB, Berlin, Germany
  • T. Weis
    DELTA, Dortmund, Germany
  A scheme where 1.5 ps and 15 ps long bunches (rms) can be stored simultaneously in the BESSY II storage ring has recently been proposed (BESSYVSR*). This paper presents simulations of single particle beam dynamics influenced by superconducting cavities used for the strong longitudinal beam focusing. The effect of RF jitter on (very short) bunches is investigated and results are discussed. Furthermore, possible effects on beam dynamics during ramp up and ramp down of the high gradient fields in the cavities are studied. The primary goal is to reveal preliminary design specifications for RF jitter on the basis of single particle dynamics.
* G. Wüstefeld, A. Jankowiak, J. Knobloch, M. Ries, Simultaneous Long and Short Electron Bunches in the BESSY II Storage Ring, Proceedings of IPAC2011, San Sebastián, Spain
slides icon Slides WEOAB101 [3.955 MB]