Author: Iadarola, G.
Paper Title Page
MOPWA034 Electron Tracking Simulations in the Presence of the Beam and External Fields 741
 
  • M. Patecki, B. Dehning, G. Iadarola, M. Sapinski
    CERN, Geneva, Switzerland
 
  The ionisation profile monitors installed in the CERN LHC and SPS, makes use of the ionisation of small quantities of injected neon gas by the circulating beam. The electrons produced are guided towards the readout system using a combination of electric and magnetic fields. However, in the presence of the beam field their tracks are modified and the resulting profile is distorted. The Geant4 physics simulation package has been used to simulate the ionisation process, while the CERN-developed PyECLOUD code has been used for tracking the resulting ionised particles. In this paper the results of simulations are compared with observations, with conclusions presented on the accuracy of the reconstruction of high-intensity beam profiles.  
 
TUPFI002 Electron Cloud and Scrubbing Studies for the LHC 1331
 
  • G. Iadarola
    Naples University Federico II, Science and Technology Pole, Napoli, Italy
  • G. Arduini, V. Baglin, H. Bartosik, C.O. Domínguez, J.F. Esteban Müller, G. Iadarola, G. Rumolo, E.N. Shaposhnikova, L.J. Tavian, F. Zimmermann
    CERN, Geneva, Switzerland
  • C.O. Domínguez
    EPFL, Lausanne, Switzerland
  • G.H.I. Maury Cuna
    CINVESTAV, Mexico City, Mexico
 
  Electron cloud build-up resulting from beam-induced multipacting is one of the major limitations for the operation of the LHC with beams with close bunch spacing. Electron clouds induce unwanted pressure rise, heat loads on the beam screens of the superconducting magnets and beam instabilities. Operation with bunch spacing of 50 ns in 2011 and 2012 has required decreasing the Secondary Electron Yield of the beam screens below the multipacting threshold for beams with this bunch spacing. This was achieved by continuous electron bombardment induced by operating the machine with high intensity beams with 50 and 25 ns spacing during dedicated periods at injection energy (450 GeV) and at top energy (3.5 and 4 TeV). The evolution of the Secondary Electron Yield during these periods, at different sections of the machine, can be estimated by pressure, heat load and by bunch-by-bunch RF stable phase measurements. The experimental information on the scrubbing process will be discussed and a possible “scrubbing strategy” to allow the operation with 50ns and 25ns beams after the Long Shutdown in 2013-2014 will be presented.  
 
TUPME034 Experimental Studies for Future LHC Beams in the SPS 1652
 
  • H. Bartosik, T. Argyropoulos, T. Bohl, S. Cettour-Cave, J.F. Esteban Müller, W. Höfle, G. Iadarola, Y. Papaphilippou, G. Rumolo, B. Salvant, F. Schmidt, E.N. Shaposhnikova, H. Timko
    CERN, Geneva, Switzerland
  • A.Y. Molodozhentsev
    KEK, Ibaraki, Japan
 
  The High Luminosity LHC (HL-LHC) project requires significantly higher beam intensity than presently accessible in the LHC injector chain. The aim of the LHC injectors upgrade project (LIU) is to prepare the CERN accelerators for the future needs of the LHC. Therefore a series of machine studies with high brightness beams were performed, assessing the present performance reach and identifying remaining limitations. Of particular concern are beam loading and longitudinal instabilities at high energy, space charge for beams with 50ns bunch spacing and electron cloud effects for beams with 25ns bunch spacing. This paper provides a summary of the performed studies, that have been possible thanks to the implementation of the SPS low gamma-transition optics.  
 
WEPEA013 Electron Cloud Studies for the Upgrade of the CERN PS 2522
 
  • G. Iadarola
    Naples University Federico II, Science and Technology Pole, Napoli, Italy
  • H. Damerau, S.S. Gilardoni, G. Iadarola, S. Rioja Fuentelsaz, G. Rumolo, G. Sterbini, C. Yin Vallgren
    CERN, Geneva, Switzerland
  • M.T.F. Pivi
    SLAC, Menlo Park, California, USA
 
  The observation of a significant dynamic pressure rise as well as measurements with dedicated detectors indicate that an electron cloud develops in the CERN PS during the last stages of the RF manipulations for the production of LHC type beams, especially with 25ns bunch spacing. Although presently these beams are not degraded by the interaction with the electron cloud, which develops only during few milliseconds before extraction, the question if this effect could degrade the future high intensity and high brightness beams foreseen by the LHC Injectors Upgrade (LIU) project is still open. Therefore several studies are being carried out employing both simulations and measurements with the electron cloud detectors in the machine. The aim is to develop a reliable electron cloud model of the PS vacuum chambers in order to identify possible future limitations and find suitable countermeasures.  
 
WEPEA014 Recent Electron Cloud Studies in the SPS 2525
 
  • G. Iadarola, H. Bartosik, M. Driss Mensi, H. Neupert, G. Rumolo, M. Taborelli
    CERN, Geneva, Switzerland
  • G. Iadarola
    Naples University Federico II, Science and Technology Pole, Napoli, Italy
 
  It is important to qualify the present status of the SPS with respect to the electron cloud before the Long Shutdown of the CERN accelerator complex, which will take place in 2013-2014. Therefore several electron cloud studies were performed during the 2012 run in order to get a full characterization of the behavior of the SPS with the LHC-type beams with 25 ns bunch spacing, which can be very sensitive to electron cloud effects. The collected information should allow to understand up to which extent this long period without beam operation - and the related interventions on the machine - will degrade the present conditioning state of the SPS, which has been achieved by “scrubbing” over several years. Several measurements with different beam conditions have been collected also on the electron cloud detectors installed in the machine. These results, in combination with detailed simulation studies, will provide the basis for defining strategies of electron cloud mitigation as required for the production of future high intensity and high brightness beams within the LHC Injectors Upgrade (LIU) project.  
 
WEPEA042 The PS Upgrade Programme: Recent Advances 2594
 
  • S.S. Gilardoni, S. Bart Pedersen, C. Bertone, N. Biancacci, A. Blas, D. Bodart, J. Borburgh, P. Chiggiato, H. Damerau, S. Damjanovic, J.D. Devine, T. Dobers, M. Gourber-Pace, S. Hancock, A. Huschauer, G. Iadarola, L.A. Lopez Hernandez, A. Masi, S. Mataguez, E. Métral, M.M. Paoluzzi, S. Persichelli, S. Pittet, S. Roesler, C. Rossi, G. Rumolo, B. Salvant, R. Steerenberg, G. Sterbini, L. Ventura, J. Vollaire, R. Wasef, C. Yin Vallgren
    CERN, Geneva, Switzerland
  • M. Migliorati
    University of Rome "La Sapienza", Rome, Italy
 
  The LHC Injectors Upgrade project (LIU) has been initiated to improve the performances of the existing injector complex at CERN to match the future requirements of the HL-LHC. In this framework, the Proton Synchrotron (PS) will undergo fundamental changes for many of its main systems: the injection energy will be increased to reduce space-charge effects, the transverse damper will be improved to cope with transverse instabilities the RF systems will be upgraded to accelerate higher beam intensity and brightness. These hardware improvements are triggered by a series of studies meant to identify the most critical performance bottlenecks, like space charge, impedances, longitudinal and transverse instabilities, as well as electron-cloud. Additionally, alternative production schemes for the LHC-type beams have been proposed and implemented to circumvent some of the present limitations. A summary of the most recent advances of the studies, as well as the proposed hardware improvements is given.  
 
WEPEA053 Progress with the Upgrade of the SPS for the HL-LHC Era 2624
 
  • B. Goddard, T. Argyropoulos, W. Bartmann, H. Bartosik, T. Bohl, F. Caspers, K. Cornelis, H. Damerau, L.N. Drøsdal, L. Ducimetière, J.F. Esteban Müller, R. Garoby, M. Gourber-Pace, W. Höfle, G. Iadarola, L.K. Jensen, V. Kain, R. Losito, M. Meddahi, A. Mereghetti, V. Mertens, Ö. Mete, E. Montesinos, Y. Papaphilippou, G. Rumolo, B. Salvant, E.N. Shaposhnikova, M. Taborelli, H. Timko, F.M. Velotti
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  The demanding beam performance requirements of the HL-LHC project translate into a set of requirements and upgrade paths for the LHC injector complex. In this paper the performance requirements for the SPS and the known limitations are reviewed in the light of the 2012 operational experience. The various SPS upgrades in progress and still under consideration are described, in addition to the machine studies and simulations performed in 2012. The expected machine performance reach is estimated on the basis of the present knowledge, and the remaining decisions that still need to be made concerning upgrade options are detailed.  
 
TUPFI002 Electron Cloud and Scrubbing Studies for the LHC 1331
 
  • G. Iadarola
    Naples University Federico II, Science and Technology Pole, Napoli, Italy
  • G. Arduini, V. Baglin, H. Bartosik, C.O. Domínguez, J.F. Esteban Müller, G. Iadarola, G. Rumolo, E.N. Shaposhnikova, L.J. Tavian, F. Zimmermann
    CERN, Geneva, Switzerland
  • C.O. Domínguez
    EPFL, Lausanne, Switzerland
  • G.H.I. Maury Cuna
    CINVESTAV, Mexico City, Mexico
 
  Electron cloud build-up resulting from beam-induced multipacting is one of the major limitations for the operation of the LHC with beams with close bunch spacing. Electron clouds induce unwanted pressure rise, heat loads on the beam screens of the superconducting magnets and beam instabilities. Operation with bunch spacing of 50 ns in 2011 and 2012 has required decreasing the Secondary Electron Yield of the beam screens below the multipacting threshold for beams with this bunch spacing. This was achieved by continuous electron bombardment induced by operating the machine with high intensity beams with 50 and 25 ns spacing during dedicated periods at injection energy (450 GeV) and at top energy (3.5 and 4 TeV). The evolution of the Secondary Electron Yield during these periods, at different sections of the machine, can be estimated by pressure, heat load and by bunch-by-bunch RF stable phase measurements. The experimental information on the scrubbing process will be discussed and a possible “scrubbing strategy” to allow the operation with 50ns and 25ns beams after the Long Shutdown in 2013-2014 will be presented.  
 
WEPEA013 Electron Cloud Studies for the Upgrade of the CERN PS 2522
 
  • G. Iadarola
    Naples University Federico II, Science and Technology Pole, Napoli, Italy
  • H. Damerau, S.S. Gilardoni, G. Iadarola, S. Rioja Fuentelsaz, G. Rumolo, G. Sterbini, C. Yin Vallgren
    CERN, Geneva, Switzerland
  • M.T.F. Pivi
    SLAC, Menlo Park, California, USA
 
  The observation of a significant dynamic pressure rise as well as measurements with dedicated detectors indicate that an electron cloud develops in the CERN PS during the last stages of the RF manipulations for the production of LHC type beams, especially with 25ns bunch spacing. Although presently these beams are not degraded by the interaction with the electron cloud, which develops only during few milliseconds before extraction, the question if this effect could degrade the future high intensity and high brightness beams foreseen by the LHC Injectors Upgrade (LIU) project is still open. Therefore several studies are being carried out employing both simulations and measurements with the electron cloud detectors in the machine. The aim is to develop a reliable electron cloud model of the PS vacuum chambers in order to identify possible future limitations and find suitable countermeasures.  
 
WEPEA014 Recent Electron Cloud Studies in the SPS 2525
 
  • G. Iadarola, H. Bartosik, M. Driss Mensi, H. Neupert, G. Rumolo, M. Taborelli
    CERN, Geneva, Switzerland
  • G. Iadarola
    Naples University Federico II, Science and Technology Pole, Napoli, Italy
 
  It is important to qualify the present status of the SPS with respect to the electron cloud before the Long Shutdown of the CERN accelerator complex, which will take place in 2013-2014. Therefore several electron cloud studies were performed during the 2012 run in order to get a full characterization of the behavior of the SPS with the LHC-type beams with 25 ns bunch spacing, which can be very sensitive to electron cloud effects. The collected information should allow to understand up to which extent this long period without beam operation - and the related interventions on the machine - will degrade the present conditioning state of the SPS, which has been achieved by “scrubbing” over several years. Several measurements with different beam conditions have been collected also on the electron cloud detectors installed in the machine. These results, in combination with detailed simulation studies, will provide the basis for defining strategies of electron cloud mitigation as required for the production of future high intensity and high brightness beams within the LHC Injectors Upgrade (LIU) project.