Author: He, L.J.
Paper Title Page
MOPME038 A New Theoretical Design of BLM System for HLS II 553
  • Y.K. Chen, L.J. He, J. Li, W. Li, Y. Li
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  Beam loss monitoring (BLM) system has been commonly used to detect the vacuum leakage. The existing BLM system for Hefei Light Source (HLS) was built in 2000. It played an important role in analyzing beam loss distribution and regulating the machine operation parameters. Recently, HLS is being upgraded to HLS II. The emittance will be decreased to increase the brilliance of synchrotron radiation. The Touschek lifetime will be much shorter than before, and dominate the total beam lifetime. It is necessary to redesign the BLM system for HLS II. The most important part of this work is to find a better method of monitoring Touschek lifetime by BLM system while keeping its general functions. According to the results of our research, a preliminary theoretical design for the new BLM system is proposed in this paper. This new system will play an important role in the storage ring commissioning, troubleshooting, and beam lifetime studying.  
THPEA015 Induced Radioactivity Research for Scraper 3173
  • L.J. He, Y.K. Chen, W. Li
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  The 200MeV electron linac of NSRL is one of the earliest high-energy electron linear accelerators in China. The electrons are accelerated to 200MeV by five accelerating tubes and collimated by the scraper followed each accelerating tube. The scraper aperture is smaller than the accelerating tube,so some electrons will hit on the structure materials when they pass through them. These lost electrons will cause induced radioactivity due to bremsstrahlung, cascade shower and photo-nuclear reaction. This paper gives the simulation to different energy electrons lost at the corresponding scraper by EGSnrc. The results showed that electrons were lost mainly at the scraper during the accelerating period,and the actual measurement confirmed this. Meanwhile,the induced radionuclide types have been studied. Recently,the linac mentioned above has been retired because of upgrading. The equipments and materials removed are used to study induced radioactivity generated in different materials. The research will provide the theoretical basis for the similar accelerator decommissioning plan,and is also significant for accelerator structure design,material selection and radiation protection programs design.