Author: Hartill, D.L.
Paper Title Page
WEPWO061 Readiness for the Cornell ERL 2447
 
  • G.H. Hoffstaetter, A.C. Bartnik, I.V. Bazarov, D.H. Bilderback, M.G. Billing, J.D. Brock, J.A. Crittenden, L. Cultrera, D.S. Dale, J. Dobbins, B.M. Dunham, R.D. Ehrlich, M. P. Ehrlichman, R. Eichhorn, K. Finkelstein, E. Fontes, M.J. Forster, S.J. Full, F. Furuta, D. Gonnella, S.W. Gray, S.M. Gruner, C.M. Gulliford, D.L. Hartill, Y. He, R.G. Helmke, K.M.V. Ho, R.P.K. Kaplan, S.S. Karkare, V.O. Kostroun, H. Lee, Y. Li, M. Liepe, X. Liu, J.M. Maxson, C.E. Mayes, A.A. Mikhailichenko, H. Padamsee, J.R. Patterson, S.B. Peck, S. Posen, P. Quigley, P. Revesz, D.H. Rice, D. Sagan, J. Sears, V.D. Shemelin, D.M. Smilgies, E.N. Smith, K.W. Smolenski, A.B. Temnykh, M. Tigner, N.R.A. Valles, V. Veshcherevich, A.R. Woll, Y. Xie, Z. Zhao
    CLASSE, Ithaca, New York, USA
 
  Funding: Supported by NSF award DMR-0807731 and NY State
Energy-Recovery Linacs (ERLs) are proposed as drivers for hard x-ray sources because of their ability to produce electron bunches with small, flexible cross sections and short lengths at high repetition rates. Cornell University has pioneered the design and hardware for ERL lightsources. This preparatory research for ERL-lightsource construction will be discussed. Important milestones have been achieved in Cornell's prototype ERL injector, including the production of a prototype SRF cavity that exceeds design specifications, the regular production of long-lived and low emittance cathodes, the acceleration of ultra-low emittance bunches, and the world-record of 65 mA current from a photoemission DC gun. We believe that demonstration of the practical feasibility of these technologies have progressed sufficiently to allow the construction of an ERL-based lightsource like that described in [erl.chess.cornell.edu/PDDR].
 
 
WEPFI076 Experience with a 5 kW, 1.3 GHz Solid State Amplifier 2869
 
  • K.M.V. Ho, R. Eichhorn, D.L. Hartill, M. Liepe
    CLASSE, Ithaca, New York, USA
 
  This study describes the experience with and performance of a commercially available 1.3 GHz 5kW Solid State Amplifier in various experiments at Cornell University. This paper focuses on several key factors in testing the performance of the amplifier. Among those are phase and amplitude stability, gain linearity, and phase shift vs. power. High power amplifiers are usually built with multiple RF power modules and the individual output signals are then combined in a power combiner. Therefore, the phases of the individual RF output power signals have to be adjusted within tight tolerances. The relative phases can be affected by different lengths cables and also affect the overall gain performance of the amplifier.  
 
THOBB202
Temperature Waves in SRF Research  
 
  • A. Ganshin, D.L. Hartill, G.H. Hoffstaetter, X. Mi, E.N. Smith, N.R.A. Valles
    CLASSE, Ithaca, New York, USA
 
  Previously Cornell University developed Oscillating Superleak Transducers (OST) to locate quench spots on superconducting cavities in superfluid helium. This work builds upon this research and presents a technique to automatically visualize quench locations from OST data [1]. This system is now fully automated. The current system consists of between 8 and 16 OSTs, a high gain low noise preamplifier, and a data acquisition card that can log up to 16 simultaneously recorded inputs. The developed software allows computing quench locations on various cavity geometries, adjustment of the location of each OST and a choice between several quench finding algorithms. Observed results are in excellent agreement with optical inspection and temperature map data.
http://newsline.linearcollider.org/2011/04/21/the-sound-of-accelerator-cavities
 
slides icon Slides THOBB202 [3.166 MB]