Author: Han, H.S.
Paper Title Page
WEPME036 The Development of LLRF System at PAL 3004
 
  • K.-H. Park, H.S. Han, Y.-G. Jung, D.E. Kim, H.-G. Lee, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
  • J.-S. Chai, Y.S. Lee
    SKKU, Suwon, Republic of Korea
  • B.-K. Kang
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  The PAL has been developing the low level radio frequency (LLRF) system. The required field stabilities of the LLRF system are within ±0.75% in amplitude and 0.35° in phase in a cavity. All the hardware including RF front–end, FPGA with peripherals such as ADC, DAC, Oscillator and digital interface were assembled. The sub-modules for the RF signal processing were written by VHDL and integrated to test at the local facility. The macroblaze software processor was implemented to make the system simple in interfacing to peripherals and to secure flexibility later. This paper described the microblaze processor which was ported into the VERTEX6 FPGA. And also this paper showed the test results of the each module and integrated into the full system.  
 
THPME026 First Results of the PAL-XFEL Prototype Undulator Measurements 3561
 
  • D.E. Kim, H.S. Han, Y.-G. Jung, H.-G. Lee, S.B. Lee, W.W. Lee, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
  • M.-H. Cho, I.S. Ko
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Pohang Accelerator Laboratory (PAL) is developing 10 GeV, 0.1 nm SASE based FEL for high power, short pulse X-ray coherent photon sources named PAL-XFEL. At the first stage PAL-XFEL needs two undulator lines for photon source. PAL is developing undulator magnetic structure based on EU-XFEL design. The hard X-ray undulator features 7.2 mm min magnetic gap, and 5.0 m magnetic length with maximum effective magnetic field larger than 0.908 T to achieve 0.1nm radiation at 10 GeV electron energy. A prototype for PAL-XFEL Xray undulator line is completed and the measurement, correction results are summarized.