Author: Guo, W.
Paper Title Page
MOPEA080 Status of the NSLS-II Injector 273
 
  • T.V. Shaftan, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, R.P. Fliller, G. Ganetis, F. Gao, A. Goel, W. Guo, K. Ha, R. Heese, H.-C. Hseuh, M.P. Johanson, B.N. Kosciuk, S. Kowalski, S.L. Kramer, Y. Li, W. Louie, S. Ozaki, D. Padrazo, J. Rose, S. Seletskiy, S.K. Sharma, G. Shen, O. Singh, V.V. Smaluk, Y. Tian, K. Vetter, W.H. Wahl, G.M. Wang, F.J. Willeke, X. Yang, L.-H. Yu, P. Zuhoski
    BNL, Upton, Long Island, New York, USA
 
  We discuss the current status and plans for developing the NSLS-II injector. The latter consists of a 200 MeV linac, a 3-GeV booster, transport lines and the storage ring injection straight section. The system design and installation are complete. Last year we concluded 200-MeV linac commissioning and are planning to commission the 3 GeV booster during summer of 2013.  
 
WEPEA079 A New Method to Integrate s-dependent Hamiltonian 2693
 
  • W. Guo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No. DE-AC02-98CH10886
The present theory to obtain higher order terms of beam dynamics is mostly through Taylor expansion and differentiation, for example, the Lie transformation. When 3-dimensional Hamiltonian is being considered the operation of integration becomes necessary. In this paper we will present a new integration theory, which leads to transfer maps for common accelerator elements based on 3-d Hamiltonians. Some physics insight was also gained from this theory, for example, the kick-map theory which is used for insertion device design and modeling, is a first-order approximation in our approach.
 
 
THPEA063 NSLS II Injector Integrated Testing 3285
 
  • G.M. Wang, B. Bacha, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, R.P. Fliller, W. Guo, K. Ha, H.-C. Hseuh, Y. Hu, W. Louie, M.A. Maggipinto, D. Padrazo, T.V. Shaftan, G. Shen, O. Singh, Y. Tian, K. Vetter, F.J. Willeke, H. Xu, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
  • P.B. Cheblakov, A.A. Derbenev, A.I. Erokhin, S.M. Gurov, R.A. Kadyrov, S.E. Karnaev, E.A. Simonov, S.V. Sinyatkin, V. Smalyuk
    BINP SB RAS, Novosibirsk, Russia
 
  The NSLS-II is a state of the art 3 GeV synchrotron light source under construction at Brookhaven National Laboratory. Since 2012, the injector system gradually moves to the commissioning stage. It occurs after group people efforts on optics design, equipment specifications, construction and tests, assembly, installation and alignment. It is very important and exciting. To make the commissioning smooth and efficient, an important effort was put on the sub-system integration test to make sure the device function along with utility, timing system and control system, to calibrate diagnostics system and to debug high level application with simulated beam signals and required hardware. In this paper, we report our integration test experience and related control system software development.  
 
THPME052 Analysis of the NSLS-II Magnet Measurement Data 3624
 
  • W. Guo, A.K. Jain, S.K. Sharma, J. Skaritka, C.J. Spataro
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No. DE-AC02-98CH10886
NSLS-II is a third generation 3GeV light source that is under-construction at the Brookhaven National Laboratory. The 30-DBA-cell storage ring will provide micron size beam resulting from the 1nm emittance. Recently the last magnet was received and the completion of girder installation in the tunnel is foreseeable in a few months. In this paper we will briefly review the physics considerations for the magnet specifications, the major field quality related issues that arose during the fabrication process. Our emphasis will be on the statistical analysis of the magnet measurement results and comparison with the design tolerances.