Author: Ge, R.
Paper Title Page
WEPWO018 Status of the IHEP 1.3 GHz Superconducting RF Program for the ILC 2355
 
  • J. Gao, Y.L. Chi, J.P. Dai, R. Ge, T.M. Huang, S. Jin, C. H. Li, S.P. Li, Z.Q. Li, H.Y. Lin, Y. Liu, Z.C. Liu, Q. Ma, Z.H. Mi, W.M. Pan, Y. Sun, J.Y. Zhai, T.X. Zhao, H.J. Zheng
    IHEP, Beijing, People's Republic of China
 
  The 1.3 GHz superconducting radio-frequency (SRF) technology is one of the key technologies for the ILC. IHEP is building an SRF Accelerating Unit, named the IHEP ILC Test Cryomodule (IHEP ILC-TC1), for the ILC SRF system integration study, high power horizontal test and possible beam test in the future. In this paper, we report the components test results and the assembly preparation of this cryomodule. Processing and vertical test of the large grain low-loss shape 9-cell cavity is done. Performance of the in-house made high power input coupler and tuner at room temperature reaches the ILC specification.  
 
THPME010 Magnetic Shielding for the 1.3 GHz Cryomodule at IHEP 3528
 
  • S. Jin, Y. Chen, J. Gao, R. Ge, Y. Liu, Z.C. Liu, J.Y. Zhai, T.X. Zhao, H.J. Zheng
    IHEP, Beijing, People's Republic of China
  • F. Yang
    China Iron and Steel Research Institute Group, Beijing, People's Republic of China
 
  An ILC-type Superconducting RF (SRF) accelerating unit is being studied at IHEP. In order to achieve the design performance including both accelerating gradient and quality factor, the SRF cavity must be cooled with ambient magnetic field well shielded to the level of several mG[1,2]. In this paper, permeability of several kinds of materials for magnetic shielding made in China is systematically studied in cooperation with China Iron & Steel Research Institute Group (CISRI) and reported for the first time. By using proper material, numerical calculation for the magnetic shielding design was done via the program of Opera-3D, and then magnetic shield was fabricated by CISRI. This paper will show those studies above and the final magnetic shielding effect at room temperature. Comparisons between simulation result and real effect will also be discussed in the paper, as well as the preliminary analysis for the magnetic field leaking of this design.