Author: Galleazzi, F.
Paper Title Page
THPEA040 Design of a Magnetic Bump Tail Scraping System for the CERN SPS 3228
 
  • Ö. Mete, J. Bauche, F. Cerutti, S. Cettour Cave, K. Cornelis, L.N. Drøsdal, F. Galleazzi, B. Goddard, L.K. Jensen, V. Kain, Y. Le Borgne, G. Le Godec, M. Meddahi, E. Veyrunes, H. Vincke, J. Wenninger
    CERN, Geneva, Switzerland
  • A. Mereghetti
    UMAN, Manchester, United Kingdom
 
  The LHC injectors are being upgraded to meet the demanding beam specification required for High Luminosity LHC (HL-LHC) operation. In order to reduce the beam losses which can trigger the sensitive LHC beam loss interlocks during the SPS-to-LHC beam injection process, it is important that the beam tails are properly scraped away in the SPS. The current SPS tail cleaning system relies on a moveable scraper blade, with the positioning of the scraper adjusted over time according to the orbit variations of the SPS. A new robust beam tail cleaning system has been designed which will use a fixed scraper block towards which the beam will be moved by a local magnetic orbit bump. The design proposal is presented, together with the related beam dynamics studies and results from machine studies with beam.