Author: Franke, S.
Paper Title Page
MOPWO001 Moment Method Beam Dynamics Code Development: Extended for Radio Frequency Quadrupole Simulations 879
  • T. Roggen, H. De Gersem, B. Masschaele
    KU Leuven, Kortrijk, Belgium
  • W. Ackermann, S. Franke, T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
  Funding: This research is funded by grant “KUL 3E100118” “Electromagnetic Field Simulation for Future Particle Accelerators”, project FP7-Euratom No. 269565 and the Belgian Nuclear Research Centre (SCK•CEN).
A Radio Frequency Quadrupole (RFQ) enables acceleration of a continuous low-velocity hadron beam, combining velocity independent electric focusing and adiabatic bunching, resulting in high-current compact bunches with nearly 100% capture and transmission efficiency. With virtually no post-construction tuning capabilities, an RFQ design phase requires all transient parameters (machining tolerances, thermo-mechanical deformation factors). This allows the determination of acceptable tolerances on input and output beam characteristics, of major importance in beam availability and beam trip prevention, and makes fast beam dynamics simulation codes incorporating RFQs indispensable. This article presents the implementation and validation of an RFQ beam line element into V-Code, a moment method beam dynamics simulation code. V-Code time integrates the Vlasov equation for an initial particle distribution represented by a discrete set of characteristic moments, accounting for all exerting internal and external forces. V-Code delivers highly accurate beam dynamics results with precision and efficiency advantages in terms of average or rms beam dimensions, projected emittances or total energy.