Author: Enomoto, A.
Paper Title Page
TUPME010 High-intensity and Low-emittance Upgrade of 7-GeV Injector Linac towards SuperKEKB 1583
 
  • K. Furukawa, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, S. Fukuda, H. Honma, R. Ichimiya, N. Iida, M. Ikeda, E. Kadokura, K. Kakihara, T. Kamitani, H. Katagiri, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Miura, F. Miyahara, T. Mori, H. Nakajima, K. Nakao, T. Natsui, Y. Ogawa, S. Ohsawa, F. Qiu, M. Satoh, T. Shidara, A. Shirakawa, H. Sugimoto, T. Suwada, T. Takatomi, T. Takenaka, M. Tanaka, Y. Yano, K. Yokoyama, M. Yoshida, L. Zang, X. Zhou
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  After a decade of successful operation at KEKB a new electron/positron collider, SuperKEKB, is being constructed to commission within FY2014. It aims at a luminosity of 8 x 1035 /s.cm2, 40-times higher than that of KEKB, in order to study the flavor physics of elementary particles further, by mainly squeezing the beams at the collision point. The injector linac should provide high-intensity and low-emittance beams of 7-GeV electron and 4-GeV positron by newly installing a RF-gun, a flux concentrator, and a damping ring with careful emittance and energy management. It also have to perform simultaneous top-up injections into four storage rings by pulse-to-pulse beam modulations not to interfare between three facilities of SuperKEKB, Photon Factory and PF-AR. This paper describes the injector design decisions and present status of the construction.  
 
THPWA012 The Development of a New Type of Electron Microscope using Superconducting RF Acceleration 3654
 
  • N. Higashi
    The University of Tokyo, Graduate School of Science, Tokyo, Japan
  • A. Enomoto, Y. Funahashi, T. Furuya, Y. Kamiya, S. Michizono, M. Nishiwaki, H. Sakai, M. Sawabe, K. Ueno, M. Yamamoto
    KEK, Ibaraki, Japan
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima, Japan
  • S. Yamashita
    ICEPP, Tokyo, Japan
 
  We are developing a new type of electron microscope (EM), which adopts RF acceleration in order to exceed the energy limit of DC acceleration used in conventional EMs. It enables us to make a high-voltage EM more compact and to examine thicker specimens, and possibly to get better spatial resolution. Using a superconducting RF cavity, we can operate the EM in CW mode to obtain a beam flux comparable to that in DC mode. Low energy dispersion ΔE/E , e.g. 10-6 or better, is required for good spatial resolution in EMs, while it is usually between 10-3 to 10-4 in accelerators. We have thus designed a special type of cavity that can be excited with the fundamental and second-harmonic frequencies simultaneously; TM010 and TM020. With the two-mode cavity, the energy dispersion of the order of 10-5 would be obtained by modifying the peak of accelerating field to be flattened. As the proof-of-principle of our concept, we are developing the prototype using a 300 keV transmission electron microscope (TEM), to which a new photocathode gun and the two-mode cavity are attached. We have already manufactured the cavity and it is under test, and the gun is under construction.