Author: Drosdal, L.N.     [Drøsdal, L.N.]
Paper Title Page
MOPFI060 Beam Transfer to LHC with the Low Gamma-transition SPS Optics 419
 
  • G. Vanbavinckhove, W. Bartmann, H. Bartosik, C. Bracco, L.N. Drøsdal, B. Goddard, V. Kain, M. Meddahi, V. Mertens, Y. Papaphilippou, J.A. Uythoven, J. Wenninger
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  A new low gamma-transition optics with a lower integer tune, was introduced in the SPS to improve beam stability at high intensity. For transferring the beam to the LHC, the extraction bumps, extraction kickers and transfer lines needed to be adapted to the new optics. In particular, the transfer lines were re-matched and re-commissioned with the new optics. The first operational results are discussed for the SPS extraction, the transfer lines and the LHC injection. A detailed comparison is presented between the old and the new optics of the trajectories, dispersion, losses and other performance aspects.  
 
MOPWO032 SPS Scraping and LHC Transverse Tails 957
 
  • L.N. Drøsdal, K. Cornelis, B. Goddard, V. Kain, M. Meddahi, Ö. Mete, B. Salvachua, G. Valentino, E. Veyrunes
    CERN, Geneva, Switzerland
 
  All high-intensity LHC beams have to be scraped before extraction from the SPS to remove the non-Gaussian transverse tails of the particle distributions. The tail particles would otherwise cause unacceptably high losses during injection or other phases of the LHC cycle. Studies have been carried out to quantify the scraping using injection losses and emittance measurements from wire scanners as diagnostics. Beams scraped in the SPS were scraped again in the LHC with collimators to investigate possible tail repopulation. The results of these studies will be presented in this paper.  
 
MOPWO033 Analysis of LHC Transfer Line Trajectory Drifts 960
 
  • L.N. Drøsdal, W. Bartmann, H. Bartosik, C. Bracco, B. Goddard, V. Kain, Y. Papaphilippou, J.A. Uythoven, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  The LHC is filled from the SPS via two 3km long transfer lines. In the first years of LHC operation large trajectory variations were discovered. The sources of bunch-by-bunch and shot-by-shot trajectory variations had been identified and improved by the 2012 LHC run. The origins of the longer term drifts were however still unclear and significant time was spent correcting the trajectories. In the last part of the 2012 run the optics in the SPS was changed to lower transition energy. Trajectory stability and correction frequency will be compared between before and after the optics change in the SPS. The sources of the variations have now been identified and will be discussed in this paper. Remedies for operation after the long shutdown will be proposed.  
 
WEPEA053 Progress with the Upgrade of the SPS for the HL-LHC Era 2624
 
  • B. Goddard, T. Argyropoulos, W. Bartmann, H. Bartosik, T. Bohl, F. Caspers, K. Cornelis, H. Damerau, L.N. Drøsdal, L. Ducimetière, J.F. Esteban Müller, R. Garoby, M. Gourber-Pace, W. Höfle, G. Iadarola, L.K. Jensen, V. Kain, R. Losito, M. Meddahi, A. Mereghetti, V. Mertens, Ö. Mete, E. Montesinos, Y. Papaphilippou, G. Rumolo, B. Salvant, E.N. Shaposhnikova, M. Taborelli, H. Timko, F.M. Velotti
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  The demanding beam performance requirements of the HL-LHC project translate into a set of requirements and upgrade paths for the LHC injector complex. In this paper the performance requirements for the SPS and the known limitations are reviewed in the light of the 2012 operational experience. The various SPS upgrades in progress and still under consideration are described, in addition to the machine studies and simulations performed in 2012. The expected machine performance reach is estimated on the basis of the present knowledge, and the remaining decisions that still need to be made concerning upgrade options are detailed.  
 
WEPEA056 Design and Beam Measurements of Modified Fast Extraction Schemes in the CERN PS for Installing a Dummy Septum to Mitigate Ring Irradiation 2633
 
  • C. Hernalsteens, H. Bartosik, L.N. Drøsdal, S.S. Gilardoni, M. Giovannozzi, A. Lachaize, Y. Papaphilippou, A. Ulsroed
    CERN, Geneva, Switzerland
 
  The proposed Multi-Turn Extraction (MTE) for the CERN PS allows to reduce the overall extraction losses for high intensity beams. The required longitudinal structure of the proton beam induces unavoidable beam losses at the magnetic extraction septum. The installation of a dummy septum with an appropriate shielding has been proposed to localise losses and to shadow the magnetic septum. Such a device, located in the extraction region, imposes tight constraints on the available beam aperture. Modified extraction schemes have been proposed and in this paper they will be presented and discussed in detail together with the measured performance.  
 
THPEA040 Design of a Magnetic Bump Tail Scraping System for the CERN SPS 3228
 
  • Ö. Mete, J. Bauche, F. Cerutti, S. Cettour Cave, K. Cornelis, L.N. Drøsdal, F. Galleazzi, B. Goddard, L.K. Jensen, V. Kain, Y. Le Borgne, G. Le Godec, M. Meddahi, E. Veyrunes, H. Vincke, J. Wenninger
    CERN, Geneva, Switzerland
  • A. Mereghetti
    UMAN, Manchester, United Kingdom
 
  The LHC injectors are being upgraded to meet the demanding beam specification required for High Luminosity LHC (HL-LHC) operation. In order to reduce the beam losses which can trigger the sensitive LHC beam loss interlocks during the SPS-to-LHC beam injection process, it is important that the beam tails are properly scraped away in the SPS. The current SPS tail cleaning system relies on a moveable scraper blade, with the positioning of the scraper adjusted over time according to the orbit variations of the SPS. A new robust beam tail cleaning system has been designed which will use a fixed scraper block towards which the beam will be moved by a local magnetic orbit bump. The design proposal is presented, together with the related beam dynamics studies and results from machine studies with beam.  
 
THPWO080 Operational Performance of the LHC Proton Beams with the SPS Low Transition Energy Optics 3945
 
  • Y. Papaphilippou, G. Arduini, T. Argyropoulos, W. Bartmann, H. Bartosik, T. Bohl, C. Bracco, S. Cettour-Cave, K. Cornelis, L.N. Drøsdal, J.F. Esteban Müller, B. Goddard, A. Guerrero, W. Höfle, V. Kain, G. Rumolo, B. Salvant, E.N. Shaposhnikova, H. Timko, D. Valuch, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  An optics in the SPS with lower integer tunes (20 versus 26) was proposed and introduced in machine studies since 2010, as a measure for increasing transverse and longitudinal instability thresholds, especially at low energy, for the LHC proton beams. After two years of machine studies and careful optimisation, the new “Q20” optics became operational in September 2012 and steadily delivered beam to the LHC until the end of the run. This paper reviews the operational performance of the Q20 optics with respect to transverse and longitudinal beam characteristics in the SPS, enabling high brightness beams injected into the LHC. Aspects of longitudinal beam stability, transmission, high-energy orbit control and beam transfer are discussed.