Author: Dolinskyy, A.
Paper Title Page
MOPWO061 Numerical Approaches for Simulation of Stochastic Cooling in 2D Phase Space 1028
 
  • M. Dolinska
    NASU/INR, Kiev, Ukraine
  • C. Dimopoulou, A. Dolinskyy, F. Nolden
    GSI, Darmstadt, Germany
 
  A consolidated fluid-dynamics algorithm for the analysis of beam dynamics under the influence of the electromagnetic field is presented. Aiming at simulating stochastic cooling of particle beams in 2D space, two numerical algorithms solving the 2D Fokker-Planck Equation are described. As an alternative approach, a numerical method based on the macro-particle tracking turn in turn in the ring (i.e. in the time domain) is introduced. Some results of the simulation of the stochastic cooling in the Collector Ring by both methods are discussed.  
 
TUPWO006 Orbit Correction System at the Collector Ring 1886
 
  • A. Dolinskyy, O. Chorniy, O.E. Gorda, A.G. Kalimov, H. Leibrock, S.A. Litvinov, M. Steck
    GSI, Darmstadt, Germany
 
  The CR is dedicated ring for cooling of hot beam coming either from the antiproton separator or SFRS. It is anticipated that the understanding and control of the beam orbits will be important for achieving low beam losses. We describe our plans for measuring and correcting the COD of the CR. The closed orbit of the CR, which is distorted due to magnets misalignments, can reduce the ring acceptance by factor of 2, if a special correction system is not applied. The system, which is developed for the CR should be periodically or manually invoked to correct the global closed orbit and used to adjust the orbit position at some point using local bump. BPM and corrector magnets, which are planned to be used at the CR, are described in this paper. SVD method is used to obtain the corrector strength or corrector factors in global or local orbit correction.  
 
WEPEA009 Effects of Field Imperfections in the Isochronous Mode of the CR Storage Ring at FAIR 2510
 
  • S.A. Litvinov, A. Dolinskyy, O.E. Gorda, M. Steck, H. Weick
    GSI, Darmstadt, Germany
  • D. Toprek
    VINCA, Belgrade, Serbia
 
  Today the challenge is to measure masses of exotic nuclei up to the limits of nuclear existence which are characterized by low production cross-sections and short half-lives. The large acceptance Collector Ring (CR) at FAIR tuned in the isochronous ion-optical mode offers unique possibilities for such measurements. Nonlinear field errors as well as fringe fields of the wide aperture quadrupoles and dipoles strongly excite the high-order aberrations which negatively affect the time resolution of the isochronous ring. Their influence is investigated here and a possible correction scheme is shown.