Author: Devanz, G.
Paper Title Page
THPFI003 Vacuum Study of the Cavity String for the IFMIF - LIPAc Cryomodule 3291
  • N. Bazin, G. Devanz, F. Orsini
    CEA/DSM/IRFU, France
  In the framework of the International Fusion Materials Irradiation Facility (IFMIF), a superconducting option has been chosen for the 5 MeV RF Linac of the first phase of the project (EVEDA), based on a cryomodule composed of 8 HWRs, 8 RF couplers and 8 Solenoid packages. This paper will focus on the beam vacuum of the cryomodule. The cryomodule beam line is made of the pattern solenoid package / cavity-coupler, and a valve on each side of the cryomodule. During the installation of the cryomodule on the accelerator system, the cavity string has to be pumped down with the beam valves closed. Thereby a manifold is connected to the cavities during the assembly of the beam line components in the clean room. In previous conferences, the cryomodule was presented with a vacuum manifold connected to each cavity. A study realized on this complex vacuum configuration with Molflow, a test-particle Monte-Carlo simulator for ultra-high vacuum, permitted to reduce the number of cavities connected to the manifold and by consequence to reduce the risk of pollution during the clean room assembly.  
THPFI004 Progress on the SRF Linac Developments for the IFMIF-LIPAC Project 3294
  • F. Orsini
    CEA/DSM/IRFU, France
  • P. Abramian, J. Calero, J.C. Calvo, J.L. Gutiérrez, T. Martínez de Alvaro, J. Munilla, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
  • N. Bazin, P. Brédy, P. Carbonnier, G. Devanz, G. Disset, N. Grouas, P. Hardy, V.M. Hennion, H. Jenhani, J. Migne, A. Mohamed, J. Neyret, J. Relland, B. Renard, D. Roudier
    CEA/IRFU, Gif-sur-Yvette, France
  In the framework of the International Fusion Materials Irradiation Facility (IFMIF), which consists of two high power accelerator drivers, each delivering a 125 mA deuteron beam at 40 MeV in CW, an accelerator prototype is presently under design and realization for the first phase of the project. This accelerator includes a SRF Linac, which is designed for the transportation and focalization of the deuteron beam up to 9 MeV. This SRF Linac is a large cryomodule of ~6 m long, working at 4.4 K and at the frequency of 175 MHz in continuous wave. It is mainly composed of 8 low-beta HWRs, 8 Solenoid Packages and 8 RF Power Couplers. This paper focuses on the recent developments and changes made on the SRF Linac design: following the abandon of the HWR frequency tuning system, initially based on a plunger located inside the central region of the resonator, a new external tuning system has been designed, implying a complete redesign of the resonator and consequently impacting the cryomodule lattice. The recent changes in the design are presented in this paper. In addition, cold tests were performed on a HWR prototype and cold tests results of the magnets prototypes are also presented.