Author: Desmons, M.
Paper Title Page
WEPWO043 IFMIF-EVEDA SRF Linac Couplers Test Bench 2396
  • D. Regidor, I. Kirpitchev, J. Molla, P. Méndez, A. Salom, M. Weber
    CIEMAT, Madrid, Spain
  • M. Desmons, N. Grouas, P. Hardy, V.M. Hennion, H. Jenhani, F. Orsini
    CEA/IRFU, Gif-sur-Yvette, France
  The IFMIF-EVEDA SRF Linac is a cryomodule equipped with eight superconducting HWR cavities, operating at the frequency of 175 MHz and powered by 200kW CW RF couplers. Before assembling the couplers to the cryomodule, it is necessary to process them using high levels of RF power. In order to perform this conditioning, the power couplers must be connected to a RF network which is fed by an RF source and ended with a load or a short-circuit, depending on the conditioning mode to be applied. A test bench has been designed for the conditioning of the SRF LINAC couplers. The main component is the “test box”, a resonant cavity where two couplers will be assembled to transmit the 200 kW from the RF source to the appropriate termination. The test box includes a large pumping port allowing an efficient pumping of the entire vacuum volume limited by the coupler ceramic windows. Several diagnostics as light detectors, vacuum gauges and thermal transducers will provide information on the relevant parameters for the control of the RF conditioning process. In addition, a support frame has been designed to maintain the whole assembly and reduce the mechanical stress on the couplers.  
THPWO004 RF Tuning of the LINAC4 RFQ 3761
  • O. Piquet, Y. Le Noa, J. Novo
    CEA/DSM/IRFU, France
  • M. Desmons, A. France
    CEA/IRFU, Gif-sur-Yvette, France
  • C. Rossi
    CERN, Geneva, Switzerland
  The construction of Linac4, the new 160 MeV CERN H injector, has started with the goal of improving the LHC injection chain with a new higher energy linac. The low energy front end of Linac4 is based on a 352 MHz, 3-m long Radiofrequency Quadrupole (RFQ) which accelerates the 70 mA, 45 keV H beam from the ion source to the energy of 3 MeV. The RFQ, made of three modules, one meter each, is of the four-vane type and it has been designed in collaboration between CERN and CEA. Construction has started in 2009 and all the steps of machining and assembly have been done at CERN. The RFQ is equipped with 35 fixed tuners and one waveguide RF port located in the second module. This paper describes the procedure used to tune the accelerating field and the power coupler of the LINAC4 RFQ in order to achieve the nominal voltage profile within ±1% accuracy.  
THPWO082 Commissioning of the Linac4 RFQ at the 3 MeV Test Stand 3951
  • C. Rossi, L. Arnaudon, G. Bellodi, J.C. Broere, O. Brunner, A.M. Lombardi, J. Marques Balula, P. Martinez Yanez, J. Noirjean, C. Pasquino, U. Raich, F. Roncarolo, M. Vretenar
    CERN, Geneva, Switzerland
  • M. Desmons, A. France, O. Piquet
    CEA/IRFU, Gif-sur-Yvette, France
  Linac4, the future 160MeV H injector to the CERN Proton Synchrotron Booster, is presently under construction at CERN as a first step of the planned upgrade of the LHC injectors. The low energy section of LINAC4, consisting of an ion source, a 352.2 MHz Radio Frequency Quadrupole (RFQ) and a chopper line is being commissioned in a dedicated test stand before installation in its final position in the tunnel. The RFQ is designed to accelerate a 45 keV, 70 mA, H beam to 3 MeV, with an efficiency of 95% while preserving the transverse emittance. The RFQ, a four-vane structure 3 m in length, has been designed in collaboration with CEA/IRFU and it has been built at the CERN workshop. The precise fabrication has allowed to achieve a field flatness of 1%. The completion of the accelerating structure in September 2012 was followed by a complete series of bead-pull measurements and by high-power conditioning to the nominal power of 0.39 MW corresponding to a voltage of 78 kV across the 3 meters. Measurements with beam are foreseen during the first half of 2013. This paper reports the results of the low-power and high power RF commissioning as well as the status of beam measurements.