Author: Daito, I.
Paper Title Page
THPWA009 Generation of Laser Compton Scattered Gamma-rays from a 150-MeV Microtron 3645
  • R. Hajima, C.T. Angell, I. Daito, T. Hayakawa, M. Kando, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • H. Ohgaki
    Kyoto University, Institute for Advanced Energy, Kyoto, Japan
  Funding: This work was supported in part by special coordination funds for promoting science and technology in Japan (Grant No. 066).
We have developed a laser Compton scattered gamma-ray source based on a 150-MeV racetrack microtron at Japan Atomic Energy Agency. The microtron equipped with a photocathode RF gun accelerates a single bunch of electrons to collide with a laser pulse from a Nd:YAG laser. We have employed laser pulse compression by stimulated Brillouin scattering to obtain high-flux gamma-rays, > 105 ph/s. The gamma-ray source is a prototype of commercial machine for nuclear security applications, non-destructive detection of nuclear material hidden in a ship cargo. Design and performance of the gamma-ray source are presented.
THPWA011 Concepts of 220 MeV Racetrack Microtron for Non-destructive Nuclear Material Detection System 3651
  • T. Hori, T. Kii, R. Kinjo, H. Ohgaki, M. Omer, H. Zen
    Kyoto University, Institute for Advanced Energy, Kyoto, Japan
  • I. Daito, R. Hajima, T. Hayakawa, M. Kando, H. Kotaki
    JAEA, Kyoto, Japan
  • F. Sakai
    SHI, Tokyo, Japan
  Funding: Japan Science and Technology Agency Special Coordination Funds for Promoting Science and Technology (Grant No. 066)
A nuclear material detection system (NMDS) using the quasi-monochromatic gamma-ray beam from a laser Compton scattering (LCS) source is proposed for the container inspection, where nuclear resonance fluorescence method is to be employed for the specific isotope identification such as U-235. In the system an electron beam of good quality at about 220-MeV must be provided for LCS. One of the most promising electron source is a compact electron accelerator named racetrack microtron (RTM). Some concepts of RTM suitable for NMDS and expected beam qualities will be presented.