Author: Corsini, R.
Paper Title Page
TUPFI040 Experimental Verification of the CLIC Two-Beam Acceleration Technology in CTF3 1436
  • P. Skowroński, A. Andersson, J. Barranco, B. Constance, R. Corsini, S. Döbert, A. Dubrovskiy, W. Farabolini, E. Ikarios, R.L. Lillestøl, T. Persson, F. Tecker
    CERN, Geneva, Switzerland
  • W. Farabolini
    CEA/DSM/IRFU, France
  • E. Ikarios
    National Technical University of Athens, Athens, Greece
  • M. Jacewicz, A. Palaia, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • R.L. Lillestøl
    University of Oslo, Oslo, Norway
  • T. Persson
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
  The Compact Linear Collider (CLIC) International Collaboration is pursuing an extensive R&D program towards a multi-TeV electron-positron collider. In particular, the development of two beam acceleration technology is the focus of the CLIC test facility CTF3. In this paper we summarize the most recent results obtained at CTF3: the results of the studies on the drive beam generation are presented, the achieved two beam acceleration performance is reported and the measured break-down rates and related observations are summarized. The stability of deceleration process performed over 13 subsequent modules and the comparison of the obtained results with the theoretical expectations are discussed. We also outline and discuss the future experimental program.  
TUPME039 The Drive Beam Phase Stability in CTF3 and its Relation to the Bunch Compression Factor 1655
  • E. Ikarios, A. Andersson, J. Barranco, B. Constance, R. Corsini, A. Gerbershagen, T. Persson, P. Skowroński, F. Tecker
    CERN, Geneva, Switzerland
  The proposed Compact Linear Collider (CLIC) is based on a two-beam acceleration scheme. The energy needed to accelerate a low intensity "main" beam is provided by a high intensity, low energy "drive" beam. The precision and stability of the phase relation between two beams is crucial for the performance of the scheme. The tolerable phase jitter is 0.2 deg rms at 12GHz. For this reason it is fundamental to understand the main possible causes of the drive beam timing jitter. Experimental work aimed at such understanding was done in the CLIC Test Facility (CTF3) where a drive beam with characteristics similar to the CLIC one is produced. Several phase measurements allowed us to conclude that the main source of phase jitter is energy jitter of the beam transformed and amplified into phase jitter when passing through a magnetic chicane. This conclusion is supported by measurements done with different momentum compaction values in the chicane. In this paper the results of these several phase measurements will be presented and compared with expectations.  
TUPME042 The SPS as an Ultra-low Emittance Damping Ring Test Facility for CLIC 1661
  • Y. Papaphilippou, R. Corsini, L.R. Evans
    CERN, Geneva, Switzerland
  In view of the plans for a future electron/positron linear collider based on the CLIC technology, an ultra-low emittance damping ring test facility is proposed, using the CERN SPS. Optics modification, required wiggler length and characteristics, energy and RF parameters are presented in order to reach CLIC performance requirements, including the effect of Intrabeam Scattering. Considerations about the necessary injected beam characteristics, its production and transfer through the existing CERN accelerator complex are also discussed.  
TUPME054 Experimental Study of the Effect of Beam Loading on RF Breakdown Rate in CLIC High-gradient Accelerating Structures 1691
  • F. Tecker, R. Corsini, M. Dayyani Kelisani, S. Döbert, A. Grudiev, O. Kononenko, S. Lebet, J.L. Navarro Quirante, G. Riddone, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Solodko
    JINR, Dubna, Moscow Region, Russia
  RF breakdown is a key issue for the multi-TeV high-luminosity e+e Compact Linear Collider (CLIC). Breakdowns in the high-gradient accelerator structures can deflect the beam and decrease the desired luminosity. The limitations of the accelerating structures due to breakdowns have been studied so far without a beam present in the structure. The presence of the beam modifies the distribution of the electrical and magnetic field distributions, which determine the breakdown rate. Therefore an experiment has been designed for high power testing a CLIC prototype accelerating structure with a beam present in the CLIC Test Facility (CTF3). A special beam line allows extracting a beam with nominal CLIC beam current and duration from the CTF3 linac. The paper describes the beam optics design for this experimental beam line and the commissioning of the experiment with beam.