Author: Chen, P.
Paper Title Page
MOPFI031 Progress on the Construction of the 100 MeV / 100 kW Electron Linac for the NSC KIPT Neutron Source 351
  • Y.L. Chi, J. Cao, P. Chen, B. Deng, C.D. Deng, D.Y. He, X. He, M. Hou, X.C. Kong, Q. Le, X.P. Li, J. Liu, R.L. Liu, W.B. Liu, H.Z. Ma, G. Pei, S. Pei, H. Song, L. Wang, S.H. Wang, X. Wang, Q. Yang, J. Yue, J.B. Zhao, J.X. Zhao, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
  • M.I. Ayzatskiy, I.M. Karnaukhov, V.A. Kushnir, V.V. Mytrochenko, A.Y. Zelinsky
    NSC/KIPT, Kharkov, Ukraine
  • Y. Gohar
    ANL, Argonne, USA
  IHEP, China is constructing a 100 MeV / 100 kW electron linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the linac was pre-installed as a testing facility in the experimental hall #2 of IHEP. The injector beam and key hardware testing results were satisfying. Recently, the injector testing facility was disassembled and all of the components for the whole linac have been shipped to Ukraine from China by ocean shipping. The installation of the whole machine in KIPT will be started in June. The progress on the construction are reported, injector beam and key hardware testing results are presented.  
THPWO042 Macroparticle Simulation Studies of a Beam-core Matching Experiment 3860
  • H. Jiang, P. Chen, S. Fu, T. Huang, F. Li, P. Li, H.C. Liu, C. Meng, M. Meng, Z.C. Mu, H.F. Ouyang, J. Peng, L.Y. Rong, B. Sun, J.M. Tian, B. Wang, S.C. Wang, W.Q. Xin, T.G. Xu, L. Zeng, F.X. Zhao
    IHEP, Beijing, People's Republic of China
  We compared the 3-D nonlinear macro- particle code IMPACT simulations with the measured beam-core profiles obtained by the wire-scanners in the beam-core matching experiment. Quadrupole scans were used to determinate the transverse properties of the RFQ output beam. The Gaussian distribution was chosen as the initial particle distribution, which is well fit with the measured beam-core profile. We matched the beam using the least-squares fitting procedure that adjusted the first four matching quadrupoles to produce equal rms beam size in the last six wire scanners. Simulations had been fairly successful in reproducing the core of the measured matched beam profiles.