Author: Cara, P.
Paper Title Page
TUOAB101 Installation and Commissioning of the 1.1 MW Deuteron Prototype Linac for IFMIF 1090
 
  • J. Knaster
    IFMIF/EVEDA, Rokkasho, Japan
  • P. Cara, A. Mosnier
    Fusion for Energy, Garching, Germany
  • S. Chel
    CEA/DSM/IRFU, France
  • J. Molla
    CIEMAT, Madrid, Spain
  • H. Suzuki
    Japan Atomic Energy Agency (JAEA), International Fusion Energy Research Center (IFERC), Rokkasho, Kamikita, Aomori, Japan
 
  IFMIF, the International Fusion Materials Irradiation Facility, will learn the degradation of the mechanical properties of purpose designed reduced activation ferritic-martensitic steels under bombardment of 14 MeV neutrons at 1018 n/m2s flux reaching values of 150 displacements per atom in the steel lattice. The understanding of the impact of Deuterium-Tritium fusion neutrons in next decade is essential to design and construct a fusion power plant; the next step after ITER. The 14 MeV neutrons are stripped from a liquid Li screen flowing at 15 m/s impacted by 2 parallel 125 mA deuteron beam at 40 MeV. IFMIF project, in its engineering validation phase, will operate in Rokkasho a 125 mA deuteron LINAC at 9 MeV that will validate the concept of IFMIF accelerator, LIPAc. The ion source will inject 140 mA deuterons at 100 KeV in a normal-conducting RFQ that will deliver the bunched beam at 5MeV to be accelerated up to 9 MeV thanks to 8 half-wave superconducting resonators. The installation and commissioning of LIPAc in Rokkasho (Japan) is sequential and the first stage is starting now; the strategy to overcome potential difficulties is detailed.  
slides icon Slides TUOAB101 [2.396 MB]