Author: Byrd, J.M.
Paper Title Page
MOPEA074 Lattice Studies for a Potential Soft X-ray Diffraction Limited Upgrade of the ALS 258
 
  • C. Steier, J.M. Byrd, R.W. Falcone, S.D. Kevan, D. Robin, C. Sun, H. Tarawneh, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Advanced Light Source (ALS) at Berkeley Lab has seen many upgrades over the years, keeping it one of the brightest sources for soft x-rays worldwide. Recent developments in magnet technology and lattice design (multi bend achromat lattices) appear to open the door for very large further increases in brightness, particularly by reducing the horizontal emittance, even within the space constraints of the existing tunnel. Initial studies yielded candidate lattices which approach the soft x-ray diffraction limit (around 2 keV) in both planes within the ALS footprint.
 
 
WEPWA068 Design Concepts for the NGLS Linac 2271
 
  • A. Ratti, J.M. Byrd, J.N. Corlett, L.R. Doolittle, P. Emma, J. Qiang, M. Venturini, R.P. Wells
    LBNL, Berkeley, California, USA
  • C. Adolphsen, C.D. Nantista
    SLAC, Menlo Park, California, USA
  • D. Arenius, S.V. Benson, D. Douglas, A. Hutton, G. Neil, W. Oren, G.P. Williams
    JLAB, Newport News, Virginia, USA
  • C.M. Ginsburg, R.D. Kephart, T.J. Peterson, A.I. Sukhanov
    Fermilab, Batavia, USA
 
  The Next Generation Light Source (NGLS) is a design concept for a multibeamline soft x-ray FEL array powered by a ~2.4 GeV CW superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. This paper describes the concepts under development for a linac operating at 1.3 GHZ and based on minimal modifications to the design of ILC cryomodules in order to leverage the extensive R&D that resulted in the ILC design. Due to the different nature of the two applications, particular attention is given here to high loaded Q operation andμphonics control, as well as high reliability and expected up time.  
 
WEPWA070 Design of a Collimation System for the Next Generation Light Source 2277
 
  • C. Steier, J.M. Byrd, S. De Santis, P. Emma, D. Li, H. Nishimura, C. F. Papadopoulos, H.J. Qian, F. Sannibale
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Next Generation Light Source at LBNL will deliver MHz repetition rate electron beams to an array of free electron lasers. Because of the high beam power approaching one MW in such a facility, effective beam collimation is extremely important to minimize radiation damage, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the conceptual design of a collimation system, including detailed simulations to verify its effectiveness.