Author: Bulyak, E.V.
Paper Title Page
TUPME056 3.5 GeV Superconducting Stacking Ring for Compton Based Polarized Positrons Source of CLIC 1697
  • E.V. Bulyak, P. Gladkikh, A.A. Kalamayko
    NSC/KIPT, Kharkov, Ukraine
  • T. Omori, J. Urakawa, K. Yokoya
    KEK, Ibaraki, Japan
  • L. Rinolfi, F. Zimmermann
    CERN, Geneva, Switzerland
  This paper describes 3.5 GeV superconducting storage ring dedicated to positron accumulation as part of a polarized positron source for CLIC, based on Compton scattering in a Compton storage ring. The superconducting stacking ring can provide a synchrotron damping time of order 250 microseconds. Together with combined injection scheme in the longitudinal and transverse plane, such a ring may solve the problem of accumulating a positron beam with efficiency close to 95 % and with the beam intensity required for CLIC.  
TUPWA050 Effect of Transverse Coupling on Asymmetric Cooling in Compton Rings 1823
  • E.V. Bulyak
    NSC/KIPT, Kharkov, Ukraine
  • J. Urakawa
    KEK, Ibaraki, Japan
  • F. Zimmermann
    CERN, Geneva, Switzerland
  Fast cooling of bunches circulating in a Compton ring is achieved by placing the collision point between electron bunches and laser pulses in a dispersive section and by, in addition, introducing a transverse offset between the laser pulse and the electron-beam closed orbit. Growth of the emittance in the dispersive transversal direction due to the additional excitation of betatron oscillations limits this type of cooling. Here we present the results of further studies on the fast cooling process, looking at the effect of the coupling of the transverse (betatron) oscillations. We first show theoretically that the transverse betatron coupling shortens the cooling time and hence reduces the steady-state energy spread of the electron beam, as well as the quantum losses. The theoretical estimates are then validated by simulations. Finally, a proof-of-principle experiment at the KEK ATF Damping Ring is proposed.  
WEPWA060 The Kharkov X-ray Generator Facility NESTOR 2253
  • A.A. Shcherbakov, V.P. Androsov, N. Ayzatsky, V.N. Boriskin, E.V. Bulyak, A.N. Dovbnya, P. Gladkikh, A.N. Gordienko, V.A. Grevtsev, A. Gvozd, V.E. Ivashchenko, A.A. Kalamayko, I.I. Karnaukhov, I.M. Karnaukhov, V.P. Kozin, V.A. Kushnir, V.P. Lyashchenko, V.S. Margin, N.I. Mocheshnikov, V.V. Mytrochenko, A. Mytsykov, I.M. Neklyudov, T.F. Nikitina, F.A. Peev, O.V. Ryezayev, V.L. Skirda, V.A. Skomorokhov, Y.N. Telegin, V.I. Trotsenko, A.Y. Zelinsky, O.D. Zvonarjova
    NSC/KIPT, Kharkov, Ukraine
  • J.I.M. Botman
    TUE, Eindhoven, The Netherlands
  • I.V. Drebot
    LAL, Orsay, France
  The last few years the sources of the X-rays NESTOR based on a storage ring with low beam energy and Compton scattering of intense laser beam are under design and development in NSC KIPT. The main task of the project is to develop compact intense X-ray generator on the base of relatively cheap accelerator equipment and up-to-date laser technologies. The paper is devoted to description of the last results on construction and commissioning of the facility.