Author: Bødker, F.
Paper Title Page
MOODB102 Multiple Function Magnet Systems for MAX IV 34
  • F. Bødker, C.E. Hansen, N. Hauge, E.K. Krauthammer, D. Kristoffersen, G. Nielsen, C.W.O. Ostenfeld, C.G. Pedersen
    Danfysik A/S, Taastrup, Denmark
  Danfysik is currently producing 60 up to 3.3 m long magnet systems consisting of up to 12 multipole magnets integrated into each of the yokes for the bending achromats of the MAX IV 3 GeV storage ring and 12 similar systems for the MAX IV 1.5 GeV storage ring. Each magnet yoke contains combined function soft-end dipole and quadrupole elements which are machined out of one single iron block at tolerances of ± 0.02 mm. In addition, separate, higher order multipole magnets are kinematically mounted into the yokes. The integration of many magnetic elements into single yoke structures enables a compact, low emittance storage ring design. The dipole and quadrupole magnetic elements are magnetically field mapped with high precision on a 3D hall probe measuring bench. Higher order multipoles are measured on a slow rotating coil system developed for that purpose. Much effort has been put into automation in order to quickly perform the very comprehensive measurement program each girder will through.  
slides icon Slides MOODB102 [2.701 MB]  
THPME001 Permanent Magnets in Accelerators can save Energy, Space, and Cost 3511
  • F. Bødker, L.O. Baandrup, A. Baurichter, N. Hauge, K.F. Laurberg, B.R. Nielsen, G. Nielsen
    Danfysik A/S, Taastrup, Denmark
  • O. Balling
    Aarhus University, Aarhus, Denmark
  • F.B. Bendixen, P. Kjeldsteen, P. Valler
    Sintex A/S, Hobro, Denmark
  • S.P. Møller, H.D. Thomsen
    ISA, Aarhus, Denmark
  • H.-A. Synal
    ETH, Zurich, Switzerland
  Green Magnet technology with close to zero electrical power consumption without the need for cooling water saves costs, space and hence spares natural resources. A compact dipole based on permanent magnets has been developed at Danfysik in collaboration with Sintex and Aarhus University. This first Green Magnet has been delivered to ETH Zurich for testing in a compact accelerator mass spectrometer facility. Permanent NdFeB magnets generate a fixed magnetic field of 0.43 T at a gap of 38.5 mm without using electrical power in the H-type 90° bending magnet with a bending radius of 250 mm. Thermal drift of the permanent magnets is passively compensated. Small air cooled trim coils permit fine tuning of the magnetic field. Magnetic field measurements and thermal stability tests show that the Green Magnet fully meets the magnetic requirements of the previously used electromagnet. The use of Green Magnet technology in other accelerator systems like synchrotron light sources is discussed.