Author: Barna, D.
Paper Title Page
MOPFI061 Concept for Elena Extraction and Beam Transfer Elements 422
 
  • J. Borburgh, B. Balhan, W. Bartmann, T. Fowler, L. Sermeus, G. Vanbavinckhove
    CERN, Geneva, Switzerland
  • R.A. Baartman
    TRIUMF, Vancouver, Canada
  • D. Barna
    University of Tokyo, Tokyo, Japan
  • V. Pricop
    Transilvania University of Brasov, Brasov, Romania
 
  In 2011 the ELENA decelerator was approved as a CERN project. Initially one extraction was foreseen, which should use a kicker and a magnetic septum which can be recuperated from an earlier installation. Since then a second extraction has been approved and a new solution was studied using only electric fields to extract the beam. This will be achieved by fast pulsing a separator, allowing single-bunch but also a full single-turn extraction from ELENA towards the experiments. The extraction and transfer requirements of ELENA are described, followed by the principal differences between the magnetic and electric field concepts. The design of electrostatic focussing and bending devices for the transfer lines will be presented. Finally the field quality which can be achieved with the separator and the concept of its power supply will be discussed.  
 
TUPWO051 Geometry and Optics of the Electrostatic ELENA Transfer Lines 1985
 
  • G. Vanbavinckhove, W. Bartmann, F. Butin, O. Choisnet
    CERN, Geneva, Switzerland
  • R.A. Baartman
    TRIUMF, Vancouver, Canada
  • D. Barna, H. Yamada
    University of Tokyo, Tokyo, Japan
 
  The future ELENA ring at CERN will decelerate the AD antiproton beam further from 5.3 MeV to 100 keV kinetic energy, to increase the efficiency of antiproton trapping. At present there are four experimental areas in the AD hall which will be complemented with the installation of ELENA by additional three experiments and an additional source for commissioning. This paper describes the optimisation of the transfer line geometry, ring rotation and source position. The optics of the transfer lines and error studies to define field and alignment tolerances are shown, and the optics particularities of electrostatic elements and their optimisation highlighted.