Author: Bahng, J.
Paper Title Page
TUPWO037 Design Study of the Low Energy Beam Transport System at RISP 1955
 
  • E.-S. Kim
    KNU, Deagu, Republic of Korea
  • J. Bahng
    Kyungpook National University, Daegu, Republic of Korea
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  We present the design status of LEBT for the RISP that consists of two 90 degree dipoles, a multi-harmonic buncher, pair solenoids, electrostatic quadrupoles and a high voltage platform. After ECR-IS with an energy of 10 keV/u, heavy-ion beams are selected by achromatic bending systems and then be bunched in the LEBT. A multi-harmonic buncher is used to achieve a small longitudinal emittance in the RFQ. We show the results on the optics design by using the TRANSPORT code and the beam tracking of two-charge beams by using the code IMPACT. We present the results and issues on beam dynamics simulaitons in the designed LEBT system.  
 
TUPWO038 Start-to-end Simulations for Heavy-ion Accelerator of RISP 1958
 
  • E.-S. Kim, S.W. Jang
    KNU, Deagu, Republic of Korea
  • J. Bahng, J.G. Hwang
    Kyungpook National University, Daegu, Republic of Korea
  • B. Choi, D. Jeon, H.J. Kim, H.J. Kim
    IBS, Daejeon, Republic of Korea
 
  RAON has been designed as a facility for rare isotope accelerator at Korea. The aceelerator consists of 28 GHz superconducting ion source, LEBT, RFQ, MEBT, superconducting linac and HEBT. The linac accelerates ion beams to 200 MeV/u with a beam power of 400 kW. Start-to-End simulations are performed from ECR-IS to HEBT and the detailed beam simulation results are presented. The beam dynamics issues are also discussed.