Author: Alonso, J.R.
Paper Title Page
MOPFI071 High Power Cyclotrons for the Neutrino Experiments DAEδALUS and IsoDAR 446
  • R.J. Barlow, A. Bungau, A.M. Kolano
    University of Huddersfield, Huddersfield, United Kingdom
  • A. Adelmann
    PSI, Villigen PSI, Switzerland
  • J.R. Alonso
    LBNL, Berkeley, California, USA
  • W.A. Barletta, A. Calanna, D. Campo, J.M. Conrad
    MIT, Cambridge, Massachusetts, USA
  • L. Calabretta
    INFN/LNS, Catania, Italy
  • F. Méot
    BNL, Upton, Long Island, New York, USA
  • H.L. Owen
    UMAN, Manchester, United Kingdom
  • M. Shaevitz
    Columbia University, New York, USA
  DAEδALUS (Decay At rest Experiment for δcp At a Laboratory for Underground Science) has been proposed to measure the value of the CP violating phase delta through the oscillation of low energy muon anti-neutrinos to electron antineutrinos. With a single large detector, three accelerators at different distances enable the oscillation to be measured with sufficient accuracy. We have proposed the superconducting multi-megawatt DAEδALUS Supercinducting Ring Cyclotron (DSRC) as the means of producing the 800 MeV 12 mA protons required, through the acceleration of H2+, ions with highly efficient stripping extraction. The DSRC comprises twin ion sources and injector cyclotrons, followed by a booster. The injector cyclotron can also be used for a separate experiment, IsoDAR (Isotope Decay At Rest) in which low energy protons produce Lithium 8, and thus a very pure electron antineutrino source which can be used to measure, or rule out, short range oscillation to a sterile neutrino. We describe recent developments in the designs of the injector and the booster, and the prospects for the two experiments.  
MOPFI073 Optimisation Studies of a High Intensity Electron Antineutrino Source 449
  • A. Bungau, R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • J.R. Alonso, J.M. Conrad, J. Spitz
    MIT, Cambridge, Massachusetts, USA
  • M. Shaevitz
    Columbia University, New York, USA
  ISODAR (Isotopes-Decay-At-Rest) is a novel, high intensity source of electron antineutrinos produced by the decay of Li-8 isotopes, which aims for searches for physics beyond the standard model. The Li-8 isotopes are produced in the inelastic interactions of low energy protons or deuterons with a Beryllium target. In addition the Li-8 is produced in the surrounding materials by secondary neutrons. This paper focuses on the optimisation of the base design target, moderator and reflector.