Author: Alekou, A.
Paper Title Page
MOPFI050 Non-local Fast Extraction from the CERN SPS at 100 and 440 GeV 392
 
  • F.M. Velotti, A. Alekou, W. Bartmann, E. Carlier, K. Cornelis, I. Efthymiopoulos, B. Goddard, L.K. Jensen, V. Kain, M. Kowalska, V. Mertens, R. Steerenberg
    CERN, Geneva, Switzerland
 
  The Long Straight Section 2 (LSS2) of the CERN SPS is connected with the North Area (NA), to which the beam to date has always been extracted using a resonant extraction technique. For new proposed short- and long-baseline neutrino experiments, a fast single turn extraction to this experimental area is required. As there are no kickers in LSS2, and the integration of any new kickers with the existing electrostatic septum would be problematic, a solution has been developed to fast extract the beam using non-local extraction with other SPS kickers. Two different kicker systems have been used, the injection kicker in LSS1 and the stronger extraction kicker in LSS6 to extract 100 and 440 GeV beam, respectively. For both solutions a large emittance beam was extracted after 5 or 9 full betatron periods. The concept and simulation details are presented with the analysis of the aperture and beam loss considerations and experimental results collected during a series of beam tests.  
 
TUPFI087 Alternative Muon Cooling Options based on Particle-Matter-Interaction for a Neutrino Factory 1550
 
  • D. Stratakis
    BNL, Upton, Long Island, New York, USA
  • A. Alekou
    CERN, Geneva, Switzerland
  • D.V. Neuffer, P. Snopok
    Fermilab, Batavia, USA
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • C.T. Rogers
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: This work is funded by US Dept. of Energy grant numbers DE AC02-98CH10886
An ionization cooling channel is a tightly spaced lattice containing absorbers for reducing the momentum of the muon beam, rf cavities for restoring the momentum and strong solenoids for focusing the beam. Such a lattice is an essential feature of most designs for Neutrino Factories and Muon Colliders. Here, we explore three different approaches for designing ionization cooling channels with periodic solenoidal focusing. Key parameters such as the engineering constraints that are arising from the length and separation between the solenoidal coils are systematically examined. In addition, we propose novel approaches for reducing the peak magnetic field inside the rf cavities by using either a magnetic shield system or a bucked coils configuration. Our lattice designs are numerically examined against two independent codes: The ICOOL and G4BL code. The feasibility of our proposed cooling channels to muon accelerators is examined by applying the proposed lattices to the front-end of a Neutrino Factory.
 
 
THPFI056 Design Study for a Future LAGUNA-LBNO Long-baseline Neutrino Facility at CERN 3418
 
  • I. Efthymiopoulos, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, M. Benedikt, M. Calviani, A. Ferrari, R. Garoby, F. Gerigk, S.S. Gilardoni, B. Goddard, A. Kosmicki, C. Lazaridis, J.A. Osborne, Y. Papaphilippou, A.S. Parfenova, E.N. Shaposhnikova, R. Steerenberg, P. Velten, H. Vincke
    CERN, Geneva, Switzerland
 
  A design study for a long baseline neutrino oscillation experiment (LBNO) with a new conventional neutrino beamline facility (CN2PY) at CERN was initiated in September 2011, supported by EU/FP7 funds. The beam will be aimed at a next generation deep-underground neutrino observatory located at the Pyhasalmi (Finland) mine at a distance of 2300 km. In an initial phase the CN2PY facility will use a 400 GeV beam extracted from SPS up to a maximum power of 750 kW, and in a second phase a 2 MW beam of about 50 GeV produced by a new High-Power Proton Synchrotron accelerator using the LP-SPL as injector also under design. The paper will focus on the design challenges of this MW-class facility and on the optimization studies of the secondary beam elements (target and horns) to produce a neutrino beam spectrum that matches best the experimental requirements for neutrino flavor oscillations and CP-violation tests. The challenges and bottlenecks in the existing CERN accelerator complex to produce the high-intensity beams foreseen for this facility at the initial phase are discussed.  
 
THPWO081 Design Options of a High-power Proton Synchrotron for LAGUNA-LBNO 3948
 
  • Y. Papaphilippou, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, M. Benedikt, I. Efthymiopoulos, R. Garoby, F. Gerigk, B. Goddard, C. Lazaridis, A.S. Parfenova, E.N. Shaposhnikova, R. Steerenberg
    CERN, Geneva, Switzerland
 
  Design studies have been initiated at CERN, exploring the prospects of future high-power proton beams for producing neutrinos, within the LAGUNA-LBNO project. These studies include the design of a 2 MW high-power proton synchrotron (HP-PS) using the LP-SPL as injector. This paper resumes the design options under study in order to reach this high power, and their implications regarding layout, magnet technology beam loss control and RF considerations. Optics optimization studies are also presented including beam transfer and collimation considerations.