The SPring-8 Angstrom Compact **Free Electron Laser (SACLA)**

on behalf of all the staffs contributing to the SACLA Hitoshi Tanaka, construction and operation

RIKEN Harima Institute

RIKEN SPring-8 Center, XFEL R&D Division

IPA **New Orleans** 🚸 IEEE 🏛 LSU 🏐 APS Ernest N. Morial Convention Center www.ipac12.org 2012/4/16

JASRI

Outline

- 1. Brief System Overview
- 2. Beam Commissioning Progress
- 3. Process to Increase Laser Intensity
- 4. Achieved FEL Performance
- 5. Future Upgrade Plan

SASE wavelength λ

Generation of X-ray with lower beam energy requires a shorter undulator period and smaller K-value

Design Concept of SPring-8 Compact SASE

Source (SCSS)

Short period in-vacuum undulator

C-band high gradient acceleration system

Themionic gun based low emittance injector

Schematic Drawing of SACLA System

Brilliant Electron Beam Generation

•Pulsed thermionic gun with a single crystal cathode Velocity bunching by twin RF potentials

 $\varepsilon_n = 0.6\pi \,\mu \text{mrad}$

Entrance

Exit

-6 10⁻¹⁰-4 10⁻¹⁰-2 10⁻¹⁰

2012/4/16

0.55

0.5

0.45

0.4

0.35

0.3

E (MeV)

238MHz Pre-buncher

1nsec

0

δt (sec)

SHB

Brilliant Electron Beam Generation

•Three-stage BC system with two nonlinear correctors

Main Parameter & Target Performance

Max. energy Operation mode Max. repetition Norm. emitt / Peak curr.

Wavelength Pulse duration Transverse coherence Peak power Peak brilliance 8.5 GeV Single bunch 60 Hz <1π μmrad / >3 kA

0.1 nm(0.06) 30~100 fs Full 10 GW level ~10³³

1. Brief System Overview

- 2. Beam Commissioning Progress
- 3. Process to Increase Laser Intensity
- 4. Achieved FEL Performance
- 5. Future Upgrade Plan

Progress of XFEL Project

2006~2010 XFEL construction 2011

- Feb. 21 Beam commissioning started
- Jun. 7 First lasing at 0.12 nm achieved

Mid. Oct. SASE power saturation achieved at 0.12 nm 2012

Mar. 1 User experiments officially started

Evolution of SASE Intensity & Shortest Wavelength

Summary of User Run in March

<u>12-1</u> 2012/3/1 :00:00 - 2012/3/14 10:00 12-2 2012/3/14 10:00 - 2012/3/28 10:00

Operation Time Statistics		Unit: hr Mean fault interval ~30 mn.						
Campaign	Total OP Time	Tuning After Shutdown	BL + Acc. Tuning , R&D Study and Test -	Experiment	Downtime	Availability	User Group	
12-1	322:00	96:00	113:23	67:44	5:41	92.3%	Gr1	
				44:53	3:11	93.4%	Gr2	
12-2	333:20	0:00	218:25	68:11	3:51	94.6%	Gr3	
				46:42	2:17	95.3%	Gr4	

Operation Condition

	-		-			
Campaign	Beam Energy (GeV)	Repetition (pps)	Wavelength (KeV)	Ave. Intensity	Used Beamline	User Group
12-1	7.8	10	12.4	90	BL3 Hard X-ray Beamline	Gr1
	7.8	10	10	200	BL3 Hard X-ray Beamline	Gr1
	7.8	10	10	180	_BL3 Hard X-ray Beamline_	Gr2
12-2	6.5	10	1 7	250	BL3 Hard X-ray Beamline	Gr3
	5.2	10	4.5	140	BL3 Hard X-ray Beamline	Gr4
			'			

Brief System Overview Beam Commissioning Progress Process to Increase Laser Intensity Achieved FEL Performance Future Upgrade Plan

Disease Symptoms

Small number of electrons meeting the required emittance and peak current

SASE intensity was limited at around 40 μ J/pulse before summer shutdown in 2011 and never increased by tuning efforts using laser intensity as a probe

- Optimize bunching and envelop conditions
 Reliable emittance measurement
- Optimize beam orbit through undulator beamline
 Orbit correction procedure & precise UND. gap corr. table

Reliable Projected Emittance Measurement

Widely scattered emittance values showing a clear correlation with the measured condition, minimum spot size

- Insufficient suppression of COTR contamination on CCD
- Un-accurate CCD camera focus

Reliable Projected Emittance Measurement

Rectangular

Mask

2012/4/16

View

Port

Reliable Projected Emittance Measurement

Enlargement of Linearly Compressive Part

Empirical Treatment on Orbit Through Undulator BL

Initially we took conventional correction based on BPM readout in changing K-value and beam energy

Presently we don't correct orbit deviation by BPMs in changing beam energy

- 1. Brief System Overview
- 2. Beam Commissioning Progress
- 3. Process to Increase Laser Intensity
- 4. Achieved FEL Performance
- 5. Future Upgrade Plan

Summary of Present Performance

Pulse Energy* Peak Power*

Intensity Fluctuation* Lasing Wavelength: **Spatial Coherence:** Repetition: Mean Fault Interval: Recovery time: **Operation mode: Reproducibility**: *It depends on the condition

Sub-m J, ~0.25mJ@10keV >10 GW (e-beam, 20~30 fs in FWHM) 10~20% (σ) 0.63 - 2.8 Å nearly full 10 Hz(Max.60 Hz)30~40 min 1 min. 24 hr continuous 70~80% of the peak

Spectrum & Profiles of SASE FEL

Laser Intensity vs Wavelength

Laser Stability

Laser availability in user experimental run was 92~95% from March to April

1. Brief System Overview

- 2. Beam Commissioning Progress
- 3. Process to Increase Laser Intensity
- 4. Achieved FEL Performance
- 5. Future Upgrade Plan

- Synergetic use of both XFEL and SPring-8
- Installing the prototype in SACLA undulator hall and upgrading
- Fast switching of plural BLs
- Seeding of XFEL

Thank you for your attention!