Accelerator Physics and Technology for ESS

EUROPEAN SPALLATION SOURCE

IPAC 2012, New Orleans, 23 May 2012

Håkan Danared

Acknowledgements

- S. Gammino
- S. Bousson
- G. Devanz
- S. Pape Møller
- R. Ruber
- M. Lindroos
- S. Peggs
- W. Hees
- A. Jansson
- D. McGinnis
- G. Trahern

Persons mentioned on the slides, plus coauthors, whose IPAC posters and papers I have taken material from

Collaborators at ESS in Lund and at our European partners

Neutron Science and Neutron Flux

EUROPEAN SPALLATION

SOURCE

Details/Resolution

Håkan Danared | IPAC 2012 | Page 3

Neutron See the Nuclei...

Evolution of Neutron Sources

International collaboration

Sweden, Denmark and Norway cover 50% of construction cost

Letters of intent from 17 European states

Remaining 50% from European partners

Multilateral MoU for pre-construction signed in Paris 11 Feb 2012

ESS Linac Parameters

Linac Layout

	Lab	E _{out} (MeV)	Beta _{out}	Length (m)	Temp (K)	Freq (MHz)
Ion source + LEBT	Catania	0.075	0.01	4.6	300	-
RFQ	Saclay	3	0.08	5.0	300	352.21
MEBT	Bilbao	3	0.08	3.5	300	352.21
DTL	Legnaro	79	0.39	32.5	300	352.21
Spoke cavities	Orsay	201	0.57	58.6	2	352.21
Medium-beta ellipticals	Saclay	623	0.80	113.9	2	704.42
High-beta ellipticals	Saclay	2500	0.96	227.9	2	704.42
HEBT	Aarhus	2500	0.96	159.2	300	-

	Spoke resonators	Medium-beta ellipticals	High-beta ellipticals
Cells per cavity	3	5	5
Cavities per cryomodule	2	4	4
Number of cryomodules	14	15	30

Beam Dynamics

Small emittance growths in all three planes

... although full beam size, including halo, is more important than RMS emittance

Maximum 1 W/m beam losses allowed

Long. phase space with SOMs in medium betas Upper row "old" linac layout, lower current layout Left: input distribution Middle: with SOMs ($4\pi/5$ etc.) Right: uniform RF errors

Beam Halo and Collimation

Beam core (grey) plus halo (colour) added "by hand" (0.5 σ , 1 σ , ..., 6 σ)

Into MEBT (top) and out of MEBT (bottom)

Particles outside of 5σ (colour) out of MEBT (top)

A position at the beginning of the MEBT can be found where these particles have large x or y and can be collimated (bottom)

Beam losses in DTL and spokes with no halo (red), with halo (grey), with halo+coll (blue) Work in progress...

EUROPEAN SPALLATION SOURCE

High-Energy Beam Transport

Beam expansion on target with quadrupole magnets plus two octupoles

Fixed collimator outside proton-beam window with design depending on beam halo and acceptable peak current density

Cavities and Cryomodules

Ordering for high-beta elliptical cavities on-going at CEA, Saclay

Spoke cavities and cryomodules: Design is in progress at IPN, Orsay,

Elliptical modules: Design is in progress at CEA, Saclay and IPN, Orsay. In addition R&D is done in collaboration with CERN

EUROPEAN SPALLATION SOURCE

RF Systems

	Frequency (MHz)	No. of couplers	Max power (kW)
RFQ	352.21	1	900
DTL	352.21	4	2150
Spokes	352.21	28	280
Medium betas	704.42	60	560
High betas	704.42	129	850

Main features:

EUROPEAN SPALLATION

SOURCE

- One RF power source per resonator
- Two klystrons per modulator for ellipticals
- Pulsed-cathode klystrons for ellipticals, DTL and RFQ
- Gridded tubes (IOTs) for spokes
- Klystrons grouped across RF gallery
- Bundled waveguide layout

RF regulation with 30% overhead

R. Zeng, THPPC083,84 A. Johansson, WEPPP093 A. Johansson, WEPPP093 Adaptive low-level feed-forward algorithms and low-gain feedback

High-bandwith piezo tuners on superconducting cavities

Beam Instrumentation

	Beam loss	Beam position	Beam current	Transv. profile	Emitt.	Bunch length	Faraday cup	Halo
LEBT			2	3	1		1	
RFQ								
MEBT		4	2	3	1		1	2
DTL	30	3	2					
Spoke cavities	45	30	1	4	2	3		tbd
Medium-beta ellipticals	30	20	1	4		3		tbd
High-beta ellipticals	42	28	1	4		3		tbd
HEBT	22	22	1	5		3		tbd

cm

Preliminary system count

Quadrupole doublet on girder with BPMs and diagnostics box

Beam-loss simulations

Integrated Control System

Decision to have a single integrated control system for ESS:

- EPICS-based
- ITER control-box concept

Achievements:

- Control-box prototype running at ESS
- Naming convention with tools implemented
- Well-defined safety/protection system architecture
- Parameter-list tools implemented
- Interfaces with instrument controls defined
- "BLED" database for linac configuration

ESS Master Programme Schedule

A Green Field Today...

Neutrons in 2019!

