

Refraction Contrast Imaging via Laser-Compton X-ray Using Optical Storage Cavity

<u>Kazuyuki Sakaue</u>, Tatsuro Aoki, Masakazu Washio (Waseda University)

Masafumi Fukuda, Yosuke Honda, Nobuhiro Terunuma, Junji Urakawa (KEK)

Laser-Compton Scattering

Laser-Compton Scattering

Undulation period is ~1µm

High energy photon is produced with small accelerator system

LUCX Location

LUCX accelerator location

In the KEK-ATF building

LUCX Experimental Setup

Laser Storage Cavity System **Super-Cavity Laser System at LUCX** LCS X-ray Stored Laser Pulse acuum Chamber LD Pulse Amplifier Electron Beam Whole laser systems are on the mover table K. Sakaue et al., Laserwire >tune col. postion Nucl. Instrum. Meth. A637(2011)S107 IPAC+12 **IPAC 2012 New Orleans, Louisiana**

Burst operation of optical cavity

Burst operation of optical cavity

>suitable for S-band pulsed Linac

Electron-Laser Parameters

Electron Laser Parameters at Interaction Point

Electron Beam			Laser		
Energy	Charge	N Bunch	Wavelength	Pulse Energy	
30/40MeV	400pC	100bunch/train	1064nm	400µJ/pulse	
Beam size (H)	Beam size (V)	Bunch length	Waist size	Pulse duration	Col. Angle
200μm (1 σ)	53μm (1σ)	4.3ps (rms)	30μm (1σ)	3ps (rms)	20deg
Bunch space	Repetition		Pulse rep.	Burst rep.	
2.8ns	12.5Hz		2.8ns	12.5Hz	

Electron Energy: 30MeV X-ray Energy >15keV X-ray

40MeV

>28keV X-ray

LCS Signal by MCP

LCS Signal by MCP

X-ray flux by MCP observation

1.8×10⁴Photon/10%b.w.

- > 1.6 × 10⁴Photon/train
- > 2.1 × 10⁵Photon/sec in Total bandwidth

(Calculated by MCP detection efficiency of 5%)

X-ray flux was not enough but... Enough for X-ray imaging test by accumulating the images

>move on to LCS X-ray imaging test

Imaging Setup

X-ray Imaging Setup

MCP with fluorescent screen + Image Intensifier

Imaging Setup

28keV Imaging Test by LCS

Imaging test by 28keV LCS X-ray

IC

Adjustable resister

15keV Imaging Test by LCS

X-ray see through image of peanut by 15keV LCS X-ray

15keV Imaging Test by LCS

Fish backbone image by 15keV LCS X-ray

Accumulate 2700shot of images >Stable during 2700shot

Refraction Contrast

Refraction Contrast

Setup of Refraction Contrast imaging test

Refraction Contrast Image

2 X-ray images by different distance from sample to detector

Distance

Refraction Contrast Image

2 X-ray images by different distance from sample to detector

Refraction Contrast Image

Line profiles of each X-ray images

Mirror Damage Limitation

Limit of our LCS X-ray is by optical storage cavity mirror damage

- ~5GW/cm²
- >~1mJ pulse energy with 1mm spot on mirror

We are now concentrating to improve the storage cavity

Upgrade Plan of LUCX Super-cavity

Upgrade Plan of LUCX Super-cavity

Summary

We are developing a Laser-Compton scattering X-ray source using S-band linac system and optical storage cavity X-ray flux is 2.1 × 10⁵Photon/sec in Total bandwidth

We performed X-ray imaging test and refraction contrast observation >refraction contrast was observed >our LCS X-ray is "High brightness"

In this summer we will upgrade our LCS system >X-ray flux :1.3 × 10⁸/sec X-ray image can be obtained by several shots

Thank you for your attentions