

Photocathode R&D at Cornell University

L. Cultrera, I. Bazarov, J. Conway, B. Dunham, Y. Hwang, Y. Li, X. Liu, T. Moore, R. Merluzzi, K. Smolenski, S. Karkare, J.Maxson, W. Schaff

- Motivations
- The photocathode laboratory
- Alkali antimonide
- MBE grown GaAs
- Perspective and future developments

• What we want from a photocathode?

Motivations

- High Quantum Efficiency in IR-VIS
- Low thermal (or intrinsic) emittance
- Sub-ps response time
- Long lifetime
- Which are the actual candidates?
 - Alkali antimonide
 - GaAs activated to NEA

Motivations

Cathode	Cathode	Typical Wavelength, λ _{opt} (nm), (eV)	Quantum Efficiency (electrons per photon)	Vacuum for 1000 Hrs (Torr)	Gap Energy + Electron Affinity, $E_A + E_G$ (eV)	Thermal Emittance (microns/mm(rms))	
Type						Eqn. [7]	Expt.
PEA:	Cs ₂ Te	211, 5.88 264, 4.70 262, 4.73	~0.1 - -	10 ⁻⁹ - -	3.5 [42] "	1.2 0.9 0.9	0.5±0.1 [35] 0.7±0.1 [35] 1.2 ±0.1 [43]
Mono-alkali	Cs ₃ Sb	432, 2.87	0.15	?	1.6 + 0.45 [42]	0.7	?
	K ₃ Sb	400, 3.10	0.07	?	1.1 + 1.6 [42]	0.5	?
	Na ₃ Sb	330, 3.76	0.02	?	1.1 + 2.44 [42]	0.4	?
	Li ₃ Sd	295, 4.20	0.0001	?	?	?	?
	Na ₂ KSb	330, 3.76	0.1	10 ⁻¹⁰	1+1 [42]	1.1	?
PEA:	(Cs)Na ₃ KSb	390, 3.18	0.2	10 ⁻¹⁰	1+0.55 [42]	1.5	?
Multi-alkali	K ₂ CsSb	543, 2.28	0.1	10 ⁻¹⁰	1+1.1 [42]	0.4	?
	K2CsSb(O)	543, 2.28	0.1	10 ⁻¹⁰	1+<1.1 [42]	~0.4	?
NEA	GaAs(Cs,F)	532, 2.33 860, 1.44	~0.1	?	1.4±0.1 [42] "	0.8 0.2	0.44±0.01 [44] 0.22±0.01 [44]
	GaN(Cs)	260, 4.77	-	?	1.96 + ? [44]	1.35	1.35±0.1 [45]
	GaAs(1-x)Px x~0.45 (Cs,F)	532, 2.33	-	?	1.96+? [44]	0.49	0.44±0.1 [44]
S-1	Ag-O-Cs	900, 1.38	0.01	?	0.7 [42]	0.7	?

Dowell et al., NIM-A, 622, (2010) 685-697

IPAC12

Cornell Laboratory for

Accelerator-based Sciences and Education (CLASSE) Motivations

• What we know

 Alkali antimonide and GaAs give routinely more than 10% QE in the "green"

Motivations

Thermal emittances are comparable

GaAs

CsK₂Sb

 $\epsilon_{nx} = \sigma_x \sqrt{\frac{MTE}{mc^2}}$

2 mm diameter "flat top" laser transverse distribution result in a thermal emittance rms values of ~0.25 mm mrad for GaAs ~0.3 mm mrad for CsK₂Sb

Y(mm)

Accelerator-based Sciences and Education (CLASSE) Motivations

• What we know

Both suffer from ion back bombardment

X(mm)

CsK₂Sb

What we don't know

 10^{-1}

10⁻²

10¹⁷

Be (650°C)

Be (700°C)

doping density (cm^{-3})

10¹⁸

10¹⁹

10²⁰

• What we don't know

The photocathode lab

 During last years we have been designing and realizing different separated UHV chamber:

The photocathode lab

The photocathode lab

The photocathode lab

Exchange stations allow pucks moving between magnetic arms

IPAC12

Gate valves separate different chambers between them

The photocathode lab

An improved version is currently being realized

- 4 pucks storage
- RGA and photocurrent measurement
- Netbook for logging data

The photocathode lab

Alkali Antimonides

Labview[®] based software to control the growth

New optimized recipe for CsK₂Sb

- 20 nm of Sb when T goes below 175°C
- when T goes below 150°C K until photocurrent peaks
- when T goes below 120°C Cs until photocurrent peaks

QE of about 10% at 520 nm are now routinely achieved

2D scanning Auger

We are working towards the measure of the stoichiometry of our photocathodes

Electron Energy Analyzer

Based on similar device designed and operated at Max Plank Institute

IPAC₁₂

The EEA is now under commissioning. It will allow to evaluate the intrinsic emittance of photoelectrons without the need for them of being generated in the injector gun.

Accelerator-based Sciences and Education (CLASSE) MTE of GaAs: a mystery?

IPAC₁₂

- Small effective mass of electrons in Γ valley, should result in very low MTE
- We have not yet been able to measure "narrow cone"
- Surface roughness? Strong scattering in active layers?

(b) Surface of heat cleaned and activated GaAs crystal used in the Cornell dc photoemission gun (rough surface)

GaAs grown by MBE

IPAC12

Why not to design ourselves the GaAs layers we want to investigate?

- Non conventional dopant
- Choice of doping profiles

MBE lab of Department of Electrical and Computer Engineering at Cornell University

Arsenic capping

As capped wafers exposed to air for 64hours then heated for growth

Thin film grown over std Zn p-doped GaAs wafer

Results:

Warm cap Oxide-free Flat surface

G20191

G20189 No cap Thick Oxide **Rough surface**

IPAC12

GaAs MTE results

MTE of GaAs grown by MBE

Quantum Efficiency

Preliminary results seem to indicate that an important role in MTE is due to

- band bending at the surface (C-doped vs intrinsic)
- Scattering at the surface Cs/F activating layer (low QE vs high QE)

 Continue to provide experimental data to fill the voids on the table

The future

- new materials will be grown
- Modularity of the UHV system allow implementing additional non destructive techniques
- Investigating the photoemission process with numerical simulations based on MonteCarlo techniques

Thank you!

Other III-V semiconductors

• Adiabatic invariant and energy conservation:

$$E_t + E_l = const$$

$$\frac{E_t}{B} = const$$

• So for marking electrode voltages V₁, V₂:

$$E_l = eV_1$$
 $E_t = \frac{e(V_2 - V_1)}{1 - B_2 / B_1}$