



# Development of the beam halo monitor in the J-PARC 3-GeV RCS

Masahiro Yoshimoto\*,

Kazami Yamamoto, Puranab. K. Saha, Shin-ichiro Meigo, Hideaki Hotchi, Naoki Hayashi Kota Okabe, Michikazu Kinsho

JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, JAPAN



- Overview of the J-PARC 3GeV-RCS
- □ Injection beam halo measurement
  - □ MWPM
  - Foil scanning (stripping foil + DCCT)
- Extraction beam halo measurement
  - □ Halo monitor
  - □ Scraping plate + S-BLM
- Beam Halo Experiment
- **G** Future plan
  - Vibrating Wire Monitor

## Summary



## **Overview of J-PARC 3GeV RCS**

#### Configuration of the Accelerator Complex of J-PARC



- J-PARC = Japan Proton Accelerator Research Complex
- Three accelerators:
  - 400MeV LINAC / <u>3GeV RCS</u> / 50GeV MR
- Multi purpose research facility with high power proton beam
  - Nuclear and Particle Physics
  - Material and Life Science



# Aim of the beam halo measurement

## □ Why are the beam halo measurement required in the RCS?

- Current user operation: 200kW
- Demonstration: 420kWeq.
- To provide such a high power proton beam for the MR with small injection beam loss, it is required to improve the extraction beam quality, namely <u>to achieve the Low-Halo and High-Intensity</u> <u>beam</u> by finer beam tuning in the RCS.

## □ How are the beam halo measured in the RCS?

- Injection: H- / 181MeV / multi-intermediate pulses
- Extraction: H+ / 3GeV / 2bunched beam
- To measure the beam haloes at the injection and extraction respectively, the various devices and methods are combined.

## **EXAMPLE** Injection beam halo measurement (1)

#### □ Multi-Wire Profile Monitor (MWPM)

• Injected H<sup>-</sup> beam profiles are measured



- The beam core and tail can be obtained clearly.
- But it is difficult to distinguish the beam halo from the measured profile.

## **Example 1** Injection beam halo measurement (2)

□ Foil scanning (stripping foil + DCCT)

- The DCCT has three current range; 0.15A, 1.5A, 15A
- And measureable dynamic range of 10<sup>-2</sup> on each current range.
- Thus total dynamic range of 10<sup>-5</sup> can be achieved.
- The stripping foil position is scanning while the DCCT signal data are acquired.
- As a result, we can obtain the beam profile with wide dynamic range.



 Two different slops are measured clearly due to the beam tail and halo.

## Extraction beam halo measurement (1)

## □ Halo monitor with scrapers

• A secondary emission current of the scraper plate is read out.



- The measured signals include some huge noise.
  - EM noises from AC magnets
  - Residual free electron
- It is difficult to measure the beam profile and the beam halo.



**Horizontal axis** 

## Extraction beam halo measurement (2)

#### □ Halo scraper + S-BLM



• This S-BLM has very high sensitivity, thus a few particles in the beam halo can be measured.



## Extraction beam halo measurement 2

## Beam halo quantification:

S-BLM need to calibrate with controlled beam losses at the scraper plate.

- Horizontal bump orbit of about 20mm is produced at the 3NBT line because the whole beam particles hit the scraper plate.
- Beam intensity is cut off by the RF chopper and reduced to less than 10<sup>-5</sup> of the full beam intensity.



- The beam halo quantification can be available from the S-BLM calibration data.
- And it is useful and powerful tool for finer beam tuning in the RCS.

beam intensity [ppb]

# Beam Halo Experiment (a typical example)

- Recent RCS effort is to suppress the beam loss at 3-50BT collimator (aperture  $< 54\pi$ ) to increase the injected beam intensity in the MR.
- Thus we try finer beam tuning in the RCS to reduce the beam halo components defined by the outside of the 54 $\pi$  emittance.

#### Finer beam tuning procedure:

beam loss particle [ppb] Halo scraper is set at  $54\pi$  emittance.

- (2)  $2^{nd}$  harmonic RF driving time is extended from 3ms to 5ms.
- Beam halo quantities are measured.  $(\mathbf{3})$
- **Experimental result:** 
  - Beam halo components can be reduced in almost half.



2<sup>nd</sup> harmonic RF driving time

#### More detail => THPPP080

## Future Plan: Vibrating Wire Monitor

- Through beam halo measurements, we found some <u>technical issues</u>.
- Then we develop the new halo monitors, and one option is the **vibrating wire monitor**.
- The VWM is based on the <u>wire</u> <u>resonant frequency</u> depending on its <u>temperature</u>. Particle heats up the wire by hitting it, and resonant freq. is shifted.
- It is a strong advantage that the VWM is not affected with any EM noise or residual free electron.





#### Check items before its installation

- **①** Acquisition time .... freq. ramp up/down time
- **②** Dynamic range .... beam profile
- At first, we try some offline studies at a test stand with a low energy electron gun.

## Test stand for offline studies of the VWM



#### □ Test stand for offline studies

- **Electron Gun :** 
  - □ energy: 200eV~5kV
  - □ Current: ~10nA
  - □ Spot size:  $\phi$ 1~5mm
- □ Vacuum chamber
  - Base pressure: ~1E-6 Pa
  - □ Vacuum gauge + Q-mass analyzer

□ Available to bake out





## **Recent experimental results**

#### <u> ) Freq. ramp up/down measurement</u>





- Freq. ramp up/down time is around one minute.
  - $\Rightarrow$  We need to estimate 181MeV/3GeV proton beam irradiation case
- Profile is noisy due to the freq. jumping is often occurred.
  - $\Rightarrow$  We need to research the cause of freq. jumping

#### The VWM will be installed in this summer.



- The injection and extraction beam haloes are measured by combining various devices and methods.
  - The injection beam halo which is less than 10<sup>-4</sup> of the beam core can be measured by combining the DCCT with the stripping foil.
  - The extraction beam halo quantification can be achieved by the S-BLM with the halo scraper. This method can measure the beam halo components with ultra low intensity of about 1x10<sup>8</sup> ppp.
- In our future plan, new beam halo monitors are developed.
  - In one option, we develop the VWM and some offline studies at the test stand are started.
  - And the VWM will be installed in this summer.