Improving the AGS Polarization with 80 Tune Jumps

V. Schoefer

L. Ahrens, M. Bai, E. Courant, W. Fu, C. Gardner, J.W. Glenn, H. Huang, F.Lin, A. Luccio, J. Mi, J. Morris, P. Rosas, T. Roser, P. Thieberger, N. Tsoupas, A. Zelenski, K. Zeno

Overview

- Overview of recent improvements to RHIC polarized proton performance
- Why do we need a tune jump?
 - Depolarization mechanisms in the AGS
- AGS Horizontal Tune Jump system
 - Principle and implementation
 - Operational experience

RHIC Polarized Protons: Run 12

Run 12 was very successful

Operation at both 100 and 255 GeV programs (5 weeks each)

Met or exceeded all luminosity goals

The increase to 255 GeV is a new record for polarized proton collisions The increase was motivated by an attemp to improve polarization decay at store (see MOPPC025)

4

Luminosity Developments

- 9 MHz RF system
 - Longer bunches
 - Higher intensity with no e-cloud
- Polarized proton source improvements
- Feedback control of orbit, tune and coupling

	Intensity [10 ¹¹ / bunch]	Peak Lumi [10 ³⁰ cm ⁻² s ⁻¹]	Avg Lumi [10 ³⁰ cm ⁻² s ⁻¹]	
Run-9	1.1	85	55	
Run-11	1.65	145	90 105	
Run-12	1.7	165		

Polarized proton runs (250 GeV)

Polarization Developments

• 2011 **→** 2012

- Incremental improvements
 - Lower emittance (source)
 - RHIC snake adjustments
 - Precise resonance correction in Booster

• 2009 **→** 2011

• RHIC ramp vertical tune of 0.672 (avoids 0.7 snake resonance)

Enabled by feedback

AGS Horizontal Tune Jump

Polarization at AGS extraction +10% (relative)

Polarized proton runs (250 GeV)

* At an intensity of 2.0x10¹¹

Spin Resonances

Thomas-BMT
$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m}\vec{S} \times \left[(1+G\gamma)\vec{B}_{\perp} + (1+G)\vec{B}_{\parallel}\right]$$

(No E-fields)

In a periodic lattice, can define a one turn map on the closed orbit:

$$e^{-i\pi v_s \hat{n}_{co}\cdot\vec{\sigma}}$$

In a planar, ideal synchrotron:

```
Stable spin direction = n_{co} = vertical
Spin tune = v_s = Gy (energy dependent)
```


For vertical stable spin direction, it is horizontal magnetic fields that drive depolarization via resonant kicks away from vertical:

Avoiding Spin Resonances in the AGS

Horizontal Tune Jump

Intensity suffers too much at high Q_x , so the resonances must be crossed

With a tune jump, they can be crossed quickly

Horizontal Tune Jump

ε = resonance strength

10

Tune Jump Implementation

- Two identical pulsed quads, one AGS superperiod apart at β_x maxima provide the jumps
- Q_x is jumped 0.04 in 100 μs
- AGS acceleration range is
 Gγ = 4.5 45.5
- 82 Horizontal resonances must be jumped

Tune Jump Implementation: Timing

Horizontal resonances result in an accumulated relative polarization loss of ~10%, distributed over all 82 jumps.

Polarization loss from a single loss cannot be measured: No empirical scans to optimize timing

Correct jump timing requires precise knowledge of Q_x and beam energy

Energy inform	Energy information comes from:			
RF frequency		Magnetic Field		
High precision at injection energy when $\beta \approx 0.9$	on	AGS reference ma	gnet	
Loses sensitivity as β->1		Limited by the pre the instrumentation	cision c on	

Jump timing has to be determined to < 250 μ s (set by jump height and acceleration rate) 250 μ s \approx 0.02 units of Gy

Maximum disagreement between the two energy measurements is just about 200 µs

Polarization Improvement

Depolarization from intrinsic resonances is amplitude dependent

Resonance jumping improves the horizontal 'polarization profile'

The R parameter quantifies the steepness of the polarization drop-off relative to the intensity distributions:

$$R = \frac{\sigma_I^2}{\sigma_P^2}$$

 σ_p , σ_l are the sigmas of the polarization and intensity profiles (fitted as Gaussian)

Ideally σ_p is large, R $\rightarrow 0$

Measured at AGS extraction with a p-carbon internal polarimeter

Vertical carbon target swept horizontally across the beam.

Polarization binned by position in beam distribution

Polarization Improvement: RHIC Injection

Jump quads used routinely for RHIC physics fills starting in Run-11 (Feb. 2012)

Measured in RHIC at injection energy with a p-carbon internal polarimeter

Polarization as shown here is averaged over the entire distribution

Polarization Improvement: RHIC Injection

Jump quads used routinely for RHIC physics fills starting in Run-11 (Feb. 2011)

Vertical Emittance

The *vertical* tune jump caused by the quads is non-adiabatic! Jump is ~30 turns, vertical betatron period is 60-100 turns. Potential sources of emittance growth:

<u>Orbit</u>

Orbit not centered in jump quads

Improved our orbit harmonic controls and software to allow easy correction of beam position in the quads

Vertical dipole damper reduces sensitivity to drift.

Optical mismatch

Quads are separated by 90° vertical betatron phase advance, beta-beating from gradient errors can break the matching

Unsynchronized jumps

The two quadrupoles must pulse simultaneously

Remote readout of an inductive pickup coil in the field region of each quad allows precise synchronization (~1 us)

The above efforts limit the emittance growth from the 82 jump to <10% (the precision of the AGS IPM) < ~0.1% per jump! 16

Open Questions

- Can the timing be further optimized?
 - Beam-based calibrations of the energy measurement?
 - E.g. Jumping a single artificially excited strong vertical intrinsic?
- Are all 82 jumps necessary?
 - Simulation and some experimental evidence suggest that the last few resonances dominate
 - Experimental verification would be a good benchmark for the simulations
 - Three or four resonances are operationally simpler to handle.

- RHIC polarized proton operation has achieved record luminosity and polarization in recent runs owing to improvements throughout the accelerator chain.
- Polarization in the AGS has improved due to the successful commissioning of the AGS horizontal tune jump system.
- The tune jump has been in operation for all RHIC polarized proton fills since February, 2011.
- Work continues to reduce systematic errors in the timing of the tune jumps