

Timing and Synchronization for the APS Short Pulse X-Ray (SPX) Project

Frank Lenkszus Senior Electronics Engineer Controls Group Advanced Photon Source Argonne National Laboratory

Outline

- Specifications
- The Problem
- The Team
- The Solution
- Solution applied to SPX

The SPX Deflecting Cavity Scheme to Produce Short X-Ray Pulses

See "Status of the Short-Pulse X-Ray (SPX) Project at the Advanced Photon Source " Ali Nassiri, et. al. WEPPC038

Figure Courtesy of Ali Nassiri

SPX Phase Tolerance Specifications

Cavity Phase Tolerances

Specification Name	RMS Value	Bandwidth	Driving Requirement
Common-mode phase Variation	10 deg	0.01 Hz – 271 kHz	Intensity Variation under 10% rms
Differential mode phase variation between sectors	< 0.077 deg	0.01 Hz – 1 kHz	Keep rms beam motion outside of SPX under 10% of the beam size/divergence for SPX
Differential mode phase variation between sectors	< 0.28 deg	1 kHz – 271 kHz	Limit effective emittance growth to below 1.5 pm

Beam-Line Laser Synchronization

Beam-Line laser needs to be synchronized to the x-ray pulse to 400 femtoseconds rms Keep time resolution degradation under 10% of x-ray pulse width

The Problem

- One Meter of cable with
 - 7 ppm/degC
 - V/C = 67%
- Result: ~50 femtoseconds/degC

At 2815 MHz: 1 degree of phase ~ 1 picosecond

The Team

- Entered into a collaboration with LBNL to apply their femtosecond synchronization system to the SPX requirements
- The team
 - ANL
 - Frank Lenkszus
 - Tim Berenc
 - Ned Arnold
 - Hangjie Ma
 - Tom Fors
 - LBNL
 - John Byrd
 - Russell Wilcox
 - Larry Doolittle
 - Gang Huang
 - Jim Greer
 - Kerri Campbell

The LBNL Femtosecond-Phase Stabilization System

- Measures the optical phase delay through a fiber with a heterodyne interferometer.
 - The optical frequency is offset by an RF frequency (~100 MHz)
 - The original optical frequency is heterodyned (mixed) with the offset optical frequency to produce an RF beat signal of 100 MHz
 - Changes in optical phase translate to identical changes in the 100 MHz beat signal
 - Offers a large leverage over stabilization in the RF domain (six-order-of-magnitude)
 - One degree of phase change in the 1560 nm optical domain (~ 21 attoseconds) translates to 1 degree of phase change in the RF domain (~25 picoseconds).

"Demonstration of Femtosecond-Phase Stabilization in 2 km Optical Fiber", J. Staples, R. Wilcox, J. Byrd, LBNL, Proceedings of PAC07 (MOPAS028)

LBL Scheme for stable transmission of RF signals

The Math

Electric Field for A -> B -> A -> C

$$E_{long} = \cos(\omega_{opt}(t - 2t_1 - t_2) + 2(\omega_{FS}(t - t_1 - t_2) + \phi_{FS}))$$

Electric Field for A -> C

$$E_{short} = \cos(\omega_{opt}(t - t_2))$$

After low-pass filtering to remove ω_{opt} and mixing with $2\omega_{\text{FS}}$ we have the phase of the detected RF

$$\phi_{det} = -2\omega_{opt}t_1 - 2\omega_{FS}(t_1 + t_2) + 2\phi_{FS}$$

Since $\omega_{opt} >> \omega_{FS}$ this term is negligible

We have:

$$\phi_{\rm det} = -2\omega_{opt}t_1 + 2\phi_{FS}$$

Reference: "Stable transmission of radio frequency signals on fiber links using interferometric delay sensing", R. Wilcox, J. Byrd, L. Doolittle, G Huang, J. Staples, Optics Letters, Vol 34, No. 20, pp 3050-3052 (Oct 15, 2009)

LBL Results

- 2.2 km fiber
 - 19.4 fs rms @ 2850 MHz (60 hours)
 - Variation ~1000 greater without correction
- 200 m fiber
 - 8.4 fs rms @ 2850 MHz (20 hours)

Reference: "Stable transmission of radio frequency signals on fiber links using interferometric delay sensing", R. Wilcox, J. Byrd, L. Doolittle, G Huang, J. Staples, Optics Letters, Vol 34, No. 20, pp 3050-3052 (Oct 15, 2009)

Calibration Process

SPX Timing/Synchronization Block Diagram

Transmitter/Sender

Reference Line Stabilization

Laser Control

Feedback

- Cavity phase errors cause a vertical kick to the beam
 - Detected as orbit distortion by BPMs
- A Beam Arrival Time Monitor (BAT) located at the upstream cavity will feedback to the main LLRF to stabilize beam arrival time.
 - But the BAT will not be specified to be stable below 0.01 Hz.
- Uncompensated beam arrival time errors will cause a common mode phase error at the upstream cavity.
- Feedback to the upstream LLRF phase from the BPMs will cause the upstream cavity phase to track the beam arrival time to correct for common mode phase errors
- Feedback to the down stream LLRF phase from bpms will correct for differential phase errors
- Feed forward from the upstream cavity phase to the Laser controller will cause the laser to track the x-ray pulse phase

Feedback

Receiver/Link Stabilizer

SYNC Head (LCLS version)

Status

- R&D
 - Four receiver chassis built
 - Frequency generation chassis built
 - Order in process for transmitter/sender
 - Sync head development underway
- CD2: December 2012

Summary

- Entered into collaboration with LBNL to apply their femtosecond timing/synchronization system to the SPX project.
 - LBNL technology is being transferred
- LBNL's system should allow stringent timing/synchronization requirements to be met

