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@ Introduction

[dUse of multipole magnets in a beam line:

» Modulation of the transverse phase-space distribution
» Transformation of the real-space intensity distribution

OA “uniform beam®*” can be formed using octupole
magnets.

» For low-rep-rate beam irradiation (BNL/NSRL)

» For suppression of local target heating due to a high-
intensity beam (GSI/UNILAC, IUCF, J-PARC, CSNS, ESS, IFMIF, etc.)

» For low-fluence/short-time irradiation (JAEA Takasaki)

Nonlinear focusing method is more capable

for advanced irradiation
as compared to beam scanning method.

*A beam with an almost uniform transverse intensity distribution



@2y Contents

CdThe transformation of the transverse distribution
is studied using sextupole and octupole magnets.
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@simulation (1: Sextupole focusing)

[ Single-particle tracking

Lattice functions [m]

0 From Cyclotron Exit to Target

O Initial distribution: Gaussian
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(@bretical analysis (1: Single-particle motion)

[0 Model of the beam line

Sextupole

magnet Transfer matrix M
(%, P[], PY)  Phase advance 0

location S
Twiss O, Bo

[1Single-particle motion

(Thin-lens approx.)

® (G o
D, D, Py = _(ao/ﬁo)xo

B “Linear” phase-space profile.
B Beam size is sufficiently large.

,Bt SXT LSXT (Nonlinear force can be enhanced.)
X = / COSPX, —+ o5 SN
B

Y. Yuri et al., PRSTAB2007



mretical analysis (2: real-space distribution)

[ Real-space distribution function

dN = p,dx, = pdx, === |y, = po[

dx,
d

)

(Particle number is preserved.)

[J Real-space distribution on the target:

,0/{\/?(305¢ JBoB sing( KSXTLSXT)X0:|

distribution Po

Sextupole
magnet Transfer matrix M
(% 14 P)  Phase advance ¢ (Xt ptZﬂ
Location &
Twiss O, Bo
Real-space

Y. Yuri et al., PRSTAB2007



@ Theoretical analysis (3: Moment)

Statistical information of the beam can be obtained from moments.

[d1st-order moment: Beam centroid displacement
X =(x )= xpdx%
1 . :
:_Egﬂov :Bo:Bt (KSXT LSXT)Sm¢ pililee

due to sextupole force

[d2nd-order moment: RMS beam radius (envelope)

o= {06 %)) =[x = %) px
Always increase

1 2
=\ &b, \/1+§3,5§ (KexrLsr) tan® ¢ |cosg) due to sextupole force

A Gaussian distribution has been assumed as an initial distribution p,. v, vuri et al., 1P$12012



@Beam centroid and rms envelope

[0 Comparing simulation results with the theoretical predictions.

Centroid displacement on the target

Rms envelope on the target
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@Simulation (2: Octupole focusing)

[ Single-particle tracking

Lattice functions [m]

O From Cyclotron Exit to Target
O Initial distribution: Gaussian
0 Rms emittance=10t mm.mrad
[ 1D (horizontal only)
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@periment @ JAEA (1: Octupole focusing)
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[0 Beam experiment at JAEA Takasaki:
0 10MeV protons from Cyclotron
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@periment @ JAEA (2: Sextupole focusing)

[0 Beam experiment at JAEA Takasaki:

Lattice functions [m]

0 10MeV protons from Cyclotron
0 Focused by sextupole magnets

[0 Measured on-target 2D profile using
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@ Summary

[0 We investigated the transformation of the transverse
distribution by multipole magnets theoretically,

numerically, and experimental

Y.

O The centroid displacement anc

rms envelope change of

the beam focused by a sextupole or octupole magnet

were shown.

O Furthermore, the intensity distribution can be
transformed from a Gaussian one to a uniform one by
octupole focusing or by combined sextupole focusing.

O Such uniform beams tailored by means of the nonlinear
focusing method are used for applications in materials
sciences (ion-track membranes, space-use device test,

etc.) at JAEA Takasaki.



