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Particle Accelerators/Colliders

Frontiers in particle accelerators/colliders:
» [LC: e*e machine (~31km,E~1TeV, L~2x103% cm?2s)
= CLIC: e*e- machine (~ 51 km, E~3TeV,L~2x 103 cm=?s)

* Muon Collider: py*u- machine (~ 2 km diameter, E ~ 3 TeV,
L~4x10% cm?sT)

* Plasma Wakefield accelerator (PWFA) --- SLAC, UCLA, ANL
(Beam produced plasma and Laser produced plasma)

» Dielectric Wakefield accelerator (DWA) --- SLAC, ANL

» THz Radiation Technology --- SLAC, ANL

Muon Collider has unique feature !
m, ~ 207m, => low synchrotron radiation, small energy spread at IP
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lonization Cooling Principle
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Balance between cooling and heating gives normalized emittance:
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Muon lonization Cooling — A Quick Look
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Efforts at Fermilab




Motivation

Important questions during the process of ionization cooling:

= How does the electron concentration of an absorbing material (e.g.
102 m-3 for Li) interact with the incoming pu-beam ?

= How does the high density of ionization developed in the process of
cooling affects the incoming beam ?

A realistic model should take into account the complete process, the
ionization of medium due to incoming beam and its interaction.
However, modeling the ionization of a medium at very high pressure
(~ 10 — 100 atm) is complex (fluid + PIC code).

To study the collective effects in beam interaction with dense ionized
medium, it is justified to assume that plasma has been formed by
several bunches passed through the absorber. This model can
address the above questions.



Motivation -- Cont’d

Important effects need to study:

= The excitation of plasma wave and wakefields for y- and p* beam
propagating inside plasma.

= Effects of various densities of plasma on incoming beam.

= Effects of external magnetic field.



XOOPIC

2-D self-consistent EM PIC code (FDTD), developed by Plasma Theory
and Simulation group, UC Berkeley.

» 2-dimensional spatial grid

- Cartesian (x,y) or cylindrically symmetric (r,z) MKS Units

- Non-uniform grids in both dimensions Distance -- meter
* Plasma and beam emission / interaction Time -- second

- Boundary interactions (absorption, reflection) E-field -- V/Im

- Secondary emission from boundaries H-field — A/m

- Monte Carlo scattering between species; ionization Energy -- Joule

- Time-dependent current injection
- Tunneling ionization

= Space charge physics
* Full EM field solver

- Electromagnetic Problems
- Wakefields -- PWFA and LWFA

= Supports MPI implementation for distributed computing

= Application: Microwave devices, Plasma sources, Beam optics,
Laser/beam plasma interaction, Accelerators.



Parameters of Study

Beam:

Shape: Gaussian

Particle: muons (u-, u*)

N, = number of beam particles = 1 x 10'2 per bunch
r, =bunch radius =3 mm

L, =bunch Length =40 mm

P = reference momentum = 200 MeV/c

m, = rest mass of muon = 105.7 MeV/c?

B =0.88

Y =21

T, = pulse length = 151 ps

E.. = 226 MeV

Q, = total charge = 160 nC

n, = peak beam density ~ 10 m=

w,, = plasma frequency of beam ~ 10° rad/s (V(neZ/g;m))

Plasma: Li
Density varies in the simulations (1016 — 1022 m-3)



Simulation Setup

2D Cylindrical Symmetry
Grid Space (N, x N,) =80 x 480
Time Step-size (At) = 0.2 ps (stability condition)

Conducting
Boundaries

Absorber Volume
lonized (Li*, e7)

Axis: Reflective Boundary
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XOOPIC Simulation Setup at Time t =

= Muon beam enters the cold lithium plasma.

= Plasma ions are modeled as a stationary uniform background.

= Plasma electrons are modeled with uniformly distributed particles with
zero initial velocity.

n,~10¥m3, n ~ 1018 m=3

p

beam Li*
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Plasma Wakefield Excitation by y- & y* Beam

Time snapshot, pulse head @ 80 mm

Muon Beam Electron Plasma



Evolution of y- - uy* beam in e- Plasma

wavelength of plasma wave = 32 mm for n, = 108 m-3
Plasma wave is excited, however, not dangerous



3-D Wake E-field Structures for y-
Snapshot @ t =210 ps (~ 55.4 mm) Beam-length = 40 mm
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Bunch head generates strong negative wakefield -- acceleration & compressﬂon




Total Energy (MeV)

Total Energy of y- and y* Beam
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Collective Effects
for
M- Beam In Plasma



Effects of Plasma Density for n,=1018
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Evolution of y- beam in Under and Over Dense Plasma

Beam indow Plasma indow
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Under dense plasma Wiped out, over dense plasma unaffected
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E, . of Beam in Different Plasma Density
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Effects of Magnetic field (B,) -- Movie

or u collider, cooling channel is placed in a strong B-field

Magnetic field suppresses the strength of wakefield



Conclusions

® Particle-in-cell simulations of beam interaction with plasma reveal detailed
wakefield structures which depend on beam and plasma densities, applied
field strength, polarity of beam particle, etc

" Plasma wakefield excitation important when peak density of beam is comparable
with plasma density, consistent with the other plasma wakefield accelerator
simulations --- polarization of medium and wakefield does not stop beam

" Negatively charged beam experiences net acceleration. However, acceleration is
weak for positively charged beam. These results are consistent with SLAC and Max
Planck Institute wakefield accelerator simulation results. Wakefield due to p* is
weaker than p-

® External magnetic field can suppress wakefield which in turn may prevent
longitudinal emittance increase

" Present simulations reveal that collective effects are not important for the
present design parameters
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Thanks for your Attention
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