

Models and Evidence of Shot Noise Reduction and Amplification

Daniel Ratner, SLAC May 24, 2012 IPAC '12, New Orleans

Shot Noise Reduction and Amplification

- 1. Motivation for studying shot noise in accelerators
- 2. Model for shot noise reduction and amplification
- 3. Experimental evidence of shot noise reduction

Electron Microbunching

Shot Noise

Electron Microbunching

Ο

Number of electrons

 $P_{rad}(\lambda) \propto N_e$

Shot Noise

Electron Microbunching

Number of electrons

 $P_{rad}(\lambda) \propto N_e$

Shot Noise

Microbunching

Electron Microbunching

Number of electrons

 $P_{rad}(\lambda) \propto N_e$

Shot Noise

Microbunching

 $P_{rad}(\lambda) \propto N_e^2$

Electron Microbunching

Number of electrons

 $P_{rad}(\lambda) \propto N_e$

Shot Noise

Microbunching

 $P_{rad}(\lambda) \propto N_{\rho}^2$

Electron Microbunching

Number of electrons

 $P_{rad}(\lambda) \propto N_e$

Shot Noise

Microbunching

•

Noise Reduction

 $P_{rad}(\lambda) \propto N_{\rho}^2$

 $\bigwedge P_{rad}(\lambda) \to 0$

Motivation: Seeded FELs

Time Domain

Frequency Domain

Motivation: Seeded FELs

Time Domain

Frequency Domain

Theoretical Models

PRL 102, 154801 (2009)

PHYSICAL REVIEW LETTERS

week ending 17 APRIL 2009

Collective-Interaction Control and Reduction of Optical Frequency Shot Noise in Charged-Particle Beams

A. Gover and E. Dyunin

Proceedings of FEL2009, Liverpool, UK

TUOB05

SUPPRESSING SHOT NOISE AND SPONTANEOUS RADIATION IN ELECTRON BEAMS*

Vladimir N. Litvinenko, BNL, Upton, USA#

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 060710 (2011)

Analysis of shot noise suppression for electron beams

Daniel Ratner Department of Applied Physics, Stanford University, Stanford, California 94305, USA

Zhirong Huang and Gennady Stupakov

Theoretical Models

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 060710 (2011)

Analysis of shot noise suppression for electron beams

Daniel Ratner Department of Applied Physics, Stanford University, Stanford, California 94305, USA

Zhirong Huang and Gennady Stupakov

Theoretical Models

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 060710 (2011)

Analysis of shot noise suppression for electron beams

Daniel Ratner Department of Applied Physics, Stanford University, Stanford, California 94305, USA

Zhirong Huang and Gennady Stupakov

Physical Picture

Model radiation from beam:

$$\left(\frac{d^2I}{d\omega d\Omega}\right)_{\rm tot} = \left(\frac{d^2I}{d\omega d\Omega}\right)_1 |Nb(\vec{k})|^2$$

e.g. for optical transition radiation

$$\left(\frac{d^2I}{d\omega d\Omega}\right)_1 \propto \frac{\gamma^4(\theta_x^2+\theta_y^2)}{\left[1+\gamma^2(\theta_x^2+\theta_y^2)\right]^2}$$

energy γ , observation angle θ

Model radiation from beam:

$$\left(\frac{d^2I}{d\omega d\Omega}\right)_{\rm tot} = \left(\frac{d^2I}{d\omega d\Omega}\right)_1 |Nb(\vec{k})|^2$$

e.g. for optical transition radiation

$$\left[\left(\frac{d^2 I}{d\omega d\Omega} \right)_1 \propto \frac{\gamma^4 (\theta_x^2 + \theta_y^2)}{\left[1 + \gamma^2 (\theta_x^2 + \theta_y^2) \right]^2} \right]$$

energy γ , observation angle θ

$$b(\vec{k}) = \frac{1}{N} \sum_{j}^{N} \exp\left[-i\tilde{K}X_{j}\right] \xrightarrow{\tilde{K} = [k\theta_{x} \ 0 \ k\theta_{y} \ 0 \ k \ 0]} \left[\frac{k = 2\pi/\lambda}{N \text{ particles with coordinates } X_{j}}\right]$$

e Space Charge Dispersion

Solve bunching in 1D Limit

 $N\left\langle \left| b(\vec{k}) \right|^2 \right\rangle \approx (1 - \Upsilon)^2$

 $\Upsilon \equiv n_0 R_{56} A$

Charge density, n_0 , dispersion R_{56} , space charge strength, A

Noise Amplification: Y >>1

E.A. Schneidmiller and M.V. Yurkov, Phys. Rev. ST Accel. Beams 13(2010)110701

Noise Reduction: Y ~ 1

Experimental Schematic

$$N\left\langle \left| b(\vec{k}) \right|^2 \right\rangle \approx (1-\Upsilon)^2$$
 $\Upsilon \equiv n_0 R_{56} A$

Experimental Data

OTR Reduction

Experimental Data

OTR Reduction

Experimental Data

OTR Reduction

Simulations

Transverse Effects

- **1. Longitudinal bunching factor:** $N\left<\left|b(\vec{k})\right|^2\right> \propto \left|\sum_{i=1...N}^{i=1...N} e^{ikz_i}\right|^2$
- **2. 3D OTR calculation:** $OTR(k) \propto |\sum_{k=1..N}^{i=1..N} \int d\theta e^{ik(r_i\theta+z_i)} \frac{\theta}{\theta^2+1/\gamma^2}|^2$

Conclusions

- 1. 1D/3D model of noise amplification and suppression
- 2. Broad-bandwidth noise reduction feasible
- 3. Experimental observation of optical shot noise reduction
- 4. Continuing studies of noise reduction and amplification

Questions?

Thanks to help from:

Franz-Josef Decker, Yuantao Ding, Paul Emma, Zhirong Huang, Henrik Loos, Agostino Marinelli, Yuri Nosochkov, Ji Qiang, Gennady Stupakov, Juhao Wu

