Laser-induced CSR: toward a probe to explore wakefields in storage rings?

E. Roussel, C. Evain, M. Le Parquier, <u>S. Bielawski</u>, C. Szwaj *PhLAM/CERLA, Université Lille I, France*

M. Adachi, H. Zen, T. Tanikawa, M. Katoh UVSOR, Institute for molecular science, Okazaki, Japan

> M. Hosaka, N. Yamamoto Nagoya University, Japan

> > May 21, 2012

Manipulation of electron bunches using an external laser

- Energy 600 MeV, bunch length \approx 3 cm, rel. energy spread $\approx 3.4 \times 10^{-4}.$
- Detection just after straight tranport of few turns
- Normal alpha mode, current well below the microbunching instability threshold.

Sine modulation of the laser pulses: experimental details

Principle: chirped pulse beating

[Weling and Auston JOSA B 13, 2783 (1996)]

Actual experimental setup

E. Roussel, C. Evain, M. Le Parquier, S. E

Laser-induced CSR: toward a probe to explore wakefields in storage

Typical spectra, tunability (UVSOR-II storage ring)

Experiments at UVSOR: Evain et al., PRSTAB, 090703 (2010), SB et al. Nature Phys. 4, 390 (2008). Previous conjectures: Byrd et al. PRL 96, 164801 (2006), Y. Takashima et al., UVSOR Activity Report 30, 56, (2003).

Experiments on photoinjectors and LINACs: J. G. Neumann et al., J. Appl. Phys. 105, 053304 (2009), Chiadroni et al., J. Phys. 359, 012018 (2012), Shen et al. PRL 107, 204801 (2011)

Related theoretical works: Sannibale et al. J. Synchrotron Radiat. 15, 655 (2008)., Xiang, D. Stupakov, G. PRSTAB 12, 080701 (2009).

Typical spectra, tunability (UVSOR-II storage ring)

Experiments at UVSOR: Evain et al., PRSTAB, 090703 (2010), SB et al. Nature Phys. 4, 390 (2008).

Previous conjectures: Byrd et al. PRL 96, 164801 (2006), Y. Takashima et al., UVSOR Activity Report 30, 56, (2003).

Experiments on photoinjectors and LINACs: J. G. Neumann et al., J. Appl. Phys. 105, 053304 (2009), Chiadroni et al., J. Phys. 359, 012018 (2012), Shen et al. PRL 107, 204801 (2011)

Related theoretical works: Sannibale et al. J. Synchrotron Radiat. 15, 655 (2008)., Xiang, D. Stupakov, G. PRSTAB 12, 080701 (2009).

What happens at higher current?

- Interaction between electrons via wakefields
 - \implies Without laser: microbunching instability.

Exp. studies at, eg, ALS, BESSY, ANKA, MLS, SOLEIL, DIAMOND... Also in compact rings such as CIRCE, SURF. NSLS...

Modeling and num. studies. see eg: Venturini et al., PRSTAB 8, 014202 (2005), Stupakov and Heifets, PRSTAB 5 054402 (2002), Th./exp. detailed comparisons: Evain et al. EPL, to appear.

New information from the response to a laser perturbation?

E. Roussel, C. Evain, M. Le Parquier, <u>S. E</u>

Laser-induced CSR: toward a probe to explore wakefields in stora

New information from response to a laser perturbation?

E. Roussel, C. Evain, M. Le Parquier, S. E.

Laser-induced CSR: toward a probe to explore wakefields in stora

Bolometer response versus modulation wavenumber: global view

E. Roussel, C. Evain, M. Le Parquier, S. Laser-induced CSR: toward a probe to explore wakefields in stora

▲ 同 ▶ → 三 ▶

Bolometer response versus modulation wavenumber: Zoom on the relevant wavenumber range

E. Roussel, C. Evain, M. Le Parquier, S. E

Laser-induced CSR: toward a probe to explore wakefields in stora

Spectrum of the delayed response?

• Detected wavenumber is ≈ 2 times larger than initial modulation.

E. Roussel, C. Evain, M. Le Parquier, S. Laser-induced CSR: toward a probe to explore wakefields in stora

-

Spectrum of the delayed response?

- Detected wavenumber is ≈ 2 times larger than initial modulation.
- Question: do we simply detect the second harmonic of the modulation?

Modeling

• Vlasov-Fokker-Planck equation (1d) for the normalized electron density $f(q, p, \theta)$. q =space, p = momentum, θ =time (dimensionless).

$$\frac{\partial f}{\partial \theta} - p \frac{\partial f}{\partial q} + q \frac{\partial f}{\partial p} - l_c E_{WF} \frac{\partial f}{\partial p} = 2\epsilon \frac{\partial}{\partial p} \left(pf + \frac{\partial f}{\partial p} \right)$$

rotation at synch. freq. wakefield diffusion and damping

- Wakefield=constant curvature + parallel plates [Murphy *et al.* Particle Accel., 57, 9 (1997)]
- Units of q and p: RMS size at equilibrium, when $I_c = 0$.
- Unit of time (θ): one synchrotron period corresponds to 2π .

Preliminary numerical results

Bolometer response versus excitation wavenumber

Numerical results

- Beamline cutoff: 2 cm⁻¹
- Bolometer time response: 2 μ s

Numerical results: form factor versus time

Reference without wakefield I = 0

With wakefield I = 4 mA

E. Roussel, C. Evain, M. Le Parquier, S. L

Laser-induced CSR: toward a probe to explore wakefields in stora

Phase space evolution

Phase space evolution

New experimental capabilities

- Modulated laser pulses can also trigger the MB instability.
- This map provides a new fingerprint of the dynamics, in which wakefields are essential.

Comparison with theory

- Simplest models (1d Vlasov FP+parallel plate wakefields) present agreements, eg, the response at \approx twice excitation frequency.
- Differences in the "fingerprints" are also present.

- Improve models, in particular included wakefield models (and couple to Vlasov-FP), so that signatures match as much as possible. Ideas: [Agoh and Yokoya PRSTAB 7, 054403 (2004)/Stupakov and Kotelnikov PRSTAB 12, 104401 (2009)].
- Compare outputs from different integration methods.
 → Vlasov Fokker-Planck versus maroparticle codes: see poster WEPPR045.