Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

Jerry Leibfritz Fermilab May 21, 2012

ILC Test Accelerator ILCTA **ILCTA NML** STF at NML **New Muon Lab** NML **SRF Test Facility ASTA** CMTF PXIE ???

Outline

- Overview of ASTA Test Facility
- Project Goals and Phases
- Layout of Facility
- Current Status
- Expansion Project
- AARD Program
- Cryomodule Test Facility (CMTF)
- Future Plans
- Schedule

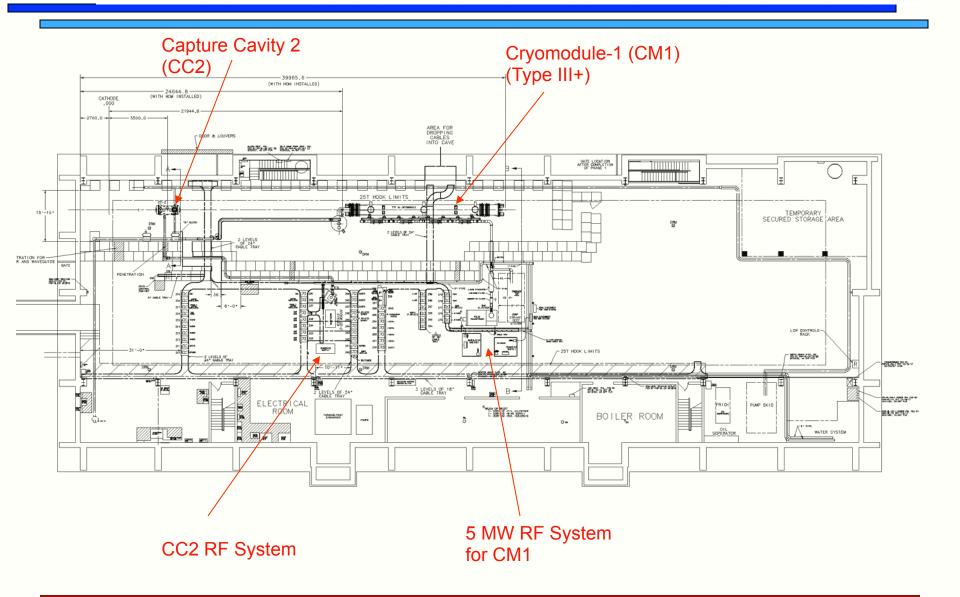
ASTA

- Advanced Superconducting Test Accelerator (ASTA)
 - ASTA is a multiple purpose facility for testing 1.3 GHz cryomodules
 - International Linear Collider (ILC) R&D
 - Advanced Accelerator R&D (AARD) facility
 - Test facility for Project X pulsed linac
 - A pulsed electron Superconducting Radio Frequency (SRF) linear accelerator

Overall Goal

- Build an RF Unit Test Facility at the New Muon Lab (NML)
 - ILC RF Unit = 3 cryomodules, 10-MW RF system
 - Beam with ILC parameters (3.2 nC/bunch @3 MHz, up to 3000 bunches @ 5Hz, 300-µm rms bunch length, 1msec pulse length)
 - ~ 750 MeV beam energy

- Prepare facility for testing first cryomodule (CM1) without beam (Completed Dec. 2010)
 - Removal of Chicago Cyclotron Magnet
 - Infrastructure, RF power, cryogenics (Tevatron satellite refrigerators #1 & #2
 - Install first cryomodule (CM1) and Capture Cavity-2 (CC2), cool down, and begin RF testing


NML During Removal of Chicago Cyclotron Magnet(CCM) (September, 2006)

NML Facility after CCM Removal and Floor Painting (February, 2007)

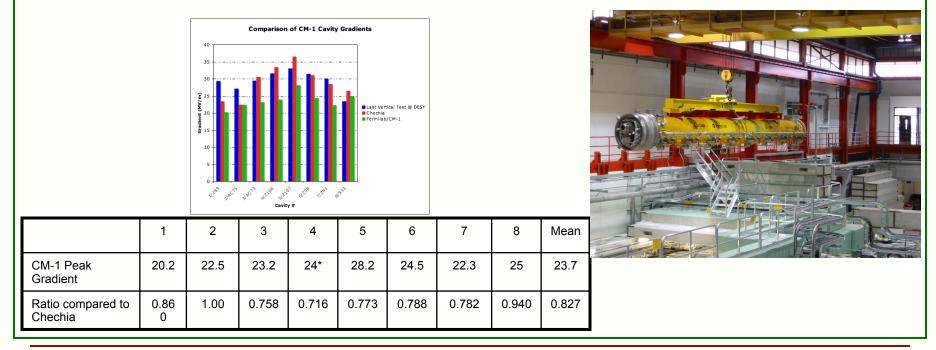
Phase-1 Layout of ASTA

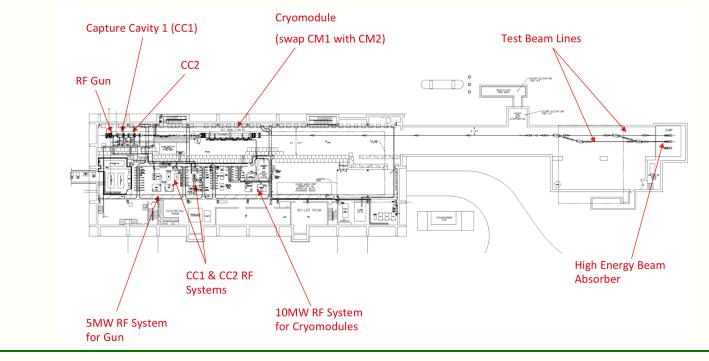
.

ASTA at NML

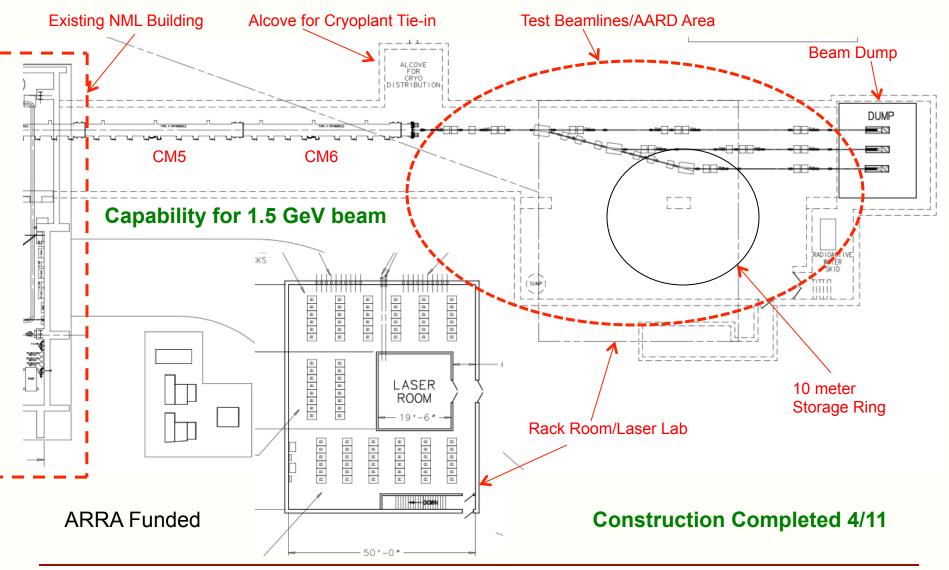
.

CM1 Installation in ASTA




- Cryomodule 1 (CM1) was a "kit" from DESY
 - Very successful 15 month operational plan of CM1 completed in March 2012
 - Goal was to verify our assembly techniques and learn to operate our systems
 - Overall accelerating gradient of ~ 200 MeV (avg.=23.7 MeV/m)
 - Installation of first high gradient (31.5 MV/m) CM2 in progress

ASTA Phase-2 (FY11 – FY13)



- Prepare for First Beam
 - NML Expansion construction (capability for 2 RF units)
 - Construction of new Cryomodule Test Facility
 - Install new gun, injector, test beam lines, and beam dump
 - Commission gun generate first beam
 - Accelerate beam through single cryomodule

NML Expansion Project

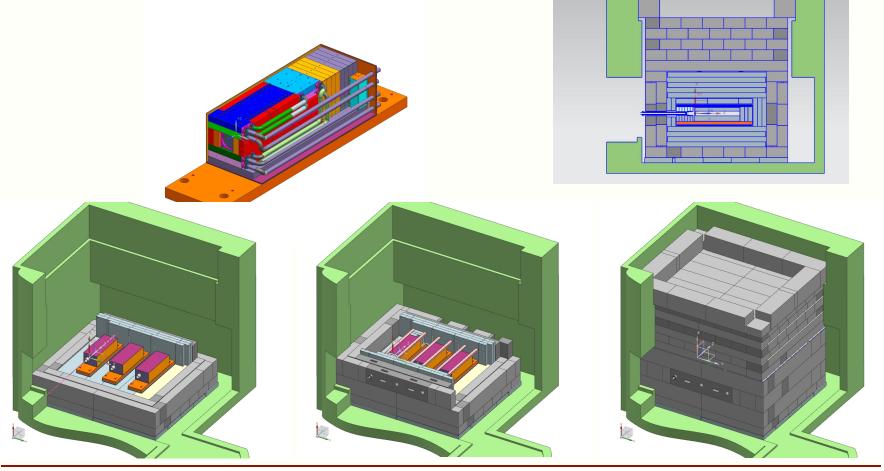
NML Expansion Construction

Digging Tunnel

Finished Tunnel

Electrical Service Building

Installation of Gun & Injector



Beam Absorber/Dump

- Three High Power (75 kW) Beam Absorbers
- 1200 Tons of Steel and Concrete

Beam Absorber/Dump

WEPPD034 - C. Baffes, et al., "Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab"

ASTA Summary and Future Plans

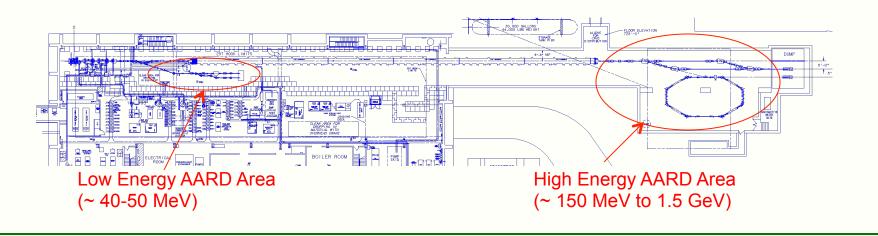
- Phase-1 of Project is complete!
 - CC2 and CM1 have been cooled to 2K and RF powered
 - CM1 operations complete
- Phase-2 in progress
 - Installation of gun, injector, beam lines, absorber/dump
 - First beam in 2012
- Phase-3
 - Full accelerator operation (beam through at least 3 CM's)
 - Advanced Accelerator R&D (AARD) Program
 - Low Energy ~ (40-50 MeV)
 - High Energy ~ (150 MeV to 1.5 GeV)

AARD Program Proposals

Proposals for NML (1)

Experiment	Energy	proponent	Motivation/ application
Long. → transverse EEX	low	FNAL/ANL	Proof-of-principle; possible application in FELs and X-ray sources
Slit microbunching generation	low	FNAL	For wakefield investigations;
Ellipsoidal beam generation	low (egun)	NIU	Low emittance beams
Microbunching investigations	low, high	ANL	Beam physics; diagnostics
ODR instrumentation development	high	ANL	Non-invasive emittance diagnostic
Flat beam transform and image charge undulator	low	FNAL/NIU	Compact UV/ soft X-ray source
Flat beam transform	high	LANL	Proof-of-principle for MaRIE
Emittance exchange	high	LANL	Proof-of-principle for MaRIE
6-D muon cooling	high	IIT	Proof-of-principle for muon collider
Optical stochastic cooling	high	IIT	Proof-of-principle; muon collider
γ-ray enhancement by crystal channeling	high	ANL	Unpolarized e ⁺ source
High gradient wakefield acceleration with dielectric structures	Low?, high?	ANL/NIU	many

AARD Program Proposals - 2


Proposals for NML (2)

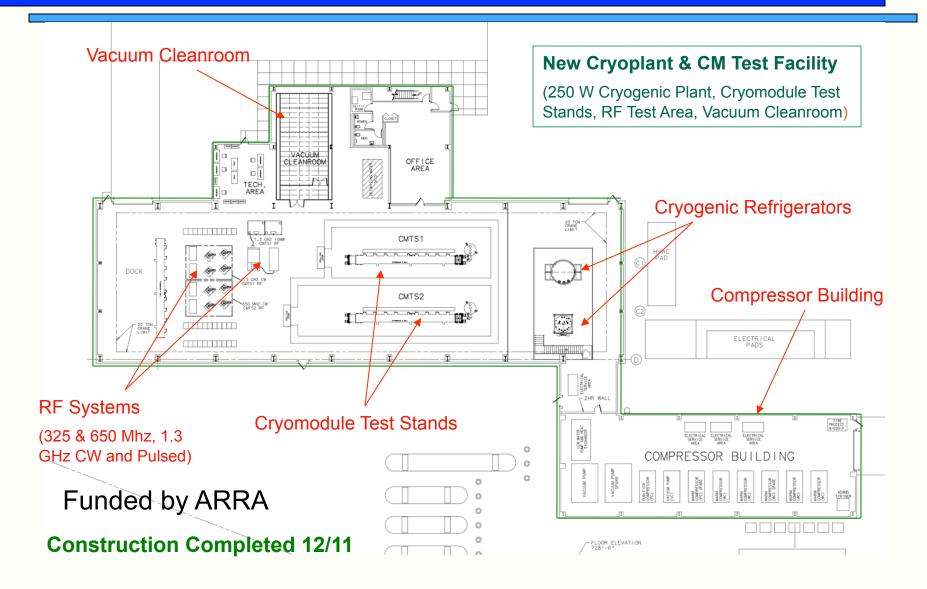
Experiment	Energy	proponent	Motivation/ application
PIC lattice test	high	Muons Inc	Muon collider
Reverse emittance exchange	Low, high	Muons Inc	Muon collider
Dielectric Wall Accelerator section	Low-high	FNAL	Muon collider; induction linac
Measure plasma wakes with long bunch trains	high	USC	Application to 2-beam plasma acceleration
Measure plasma wakes with laser interferometry	high	USC	Application to 2-beam plasma acceleration
Photoproduction of muons @ 300 MeV	high	FNAL	Homeland security; verify production model
Test of integrable beam optics	high	FNAL	Proof-of-principle; future high current proton machines
Study HOM absorption	high	FNAL	Project-X and Muon Collider; ADS
Study coupler kicks on beams	low	FNAL	ILC, Pr-X, Muon collider, ADS
Study cavity BPM	Low-high	FNAL	ILC, Project-X , Muon Collider; ADS
High charge bunch loading	high	FNAL	Muon Collider (acceleration of 1e12)
MC IR optic method test	Low - high	FNAL	Muon collider, ADS

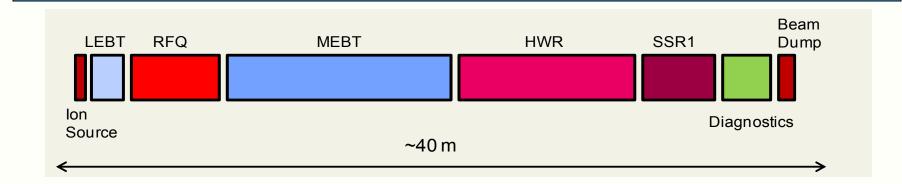
- Selected Three "Phase-1" AARD Experiments for ASTA
 - Double Emittance Exchange (D-EEX) beam line for pulse shaping experiments (at 250-350 MeV)
 - High Brightness Compact Diamond Radiator (NIU/Vanderbilt) test experiment (at 40 MeV)
 - Integrable Optics Test Accelerator (IOTA) to demonstrate new nonlinear optics solution (at 150-300 MeV)

IOTA Storage Ring at ASTA

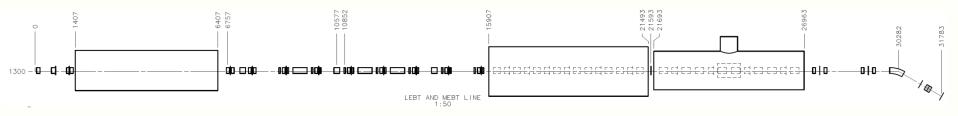
- Integrable Optics Test Accelerator (IOTA)
 - 30-meter circumference storage ring that will study non-linear accelerator optics (at 150-300 MeV)

MOYCP01 – S. Nagaitsev et al., "Design and Simulation of IOTA – A Novel Concept of Integrable Optics Test Accelerator"

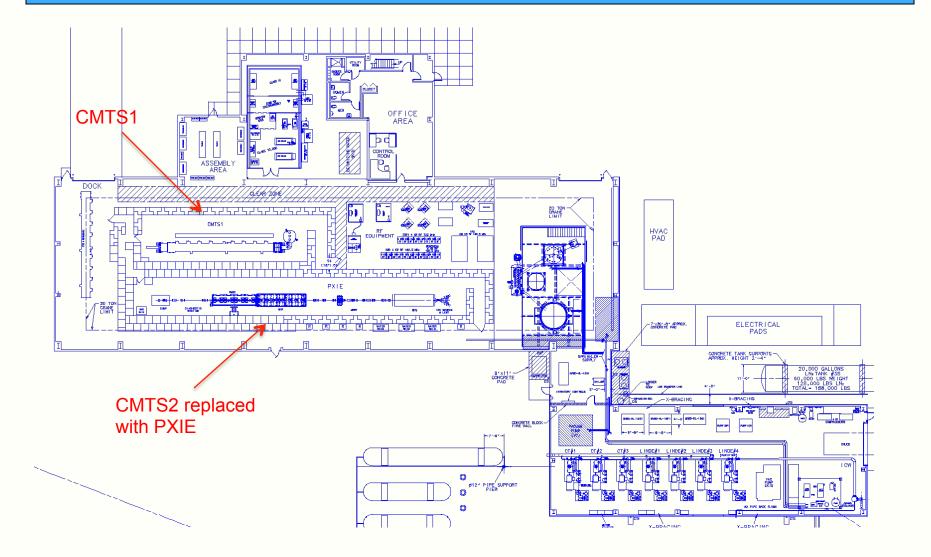



 CMTF is a new set of buildings (adjacent to NML) originally designed to house two helium cryoplants and two cryomodule test stands. Now being repurposed to house PXIE.

CMTF Layout



Project X Injector Experiment (PXIE)

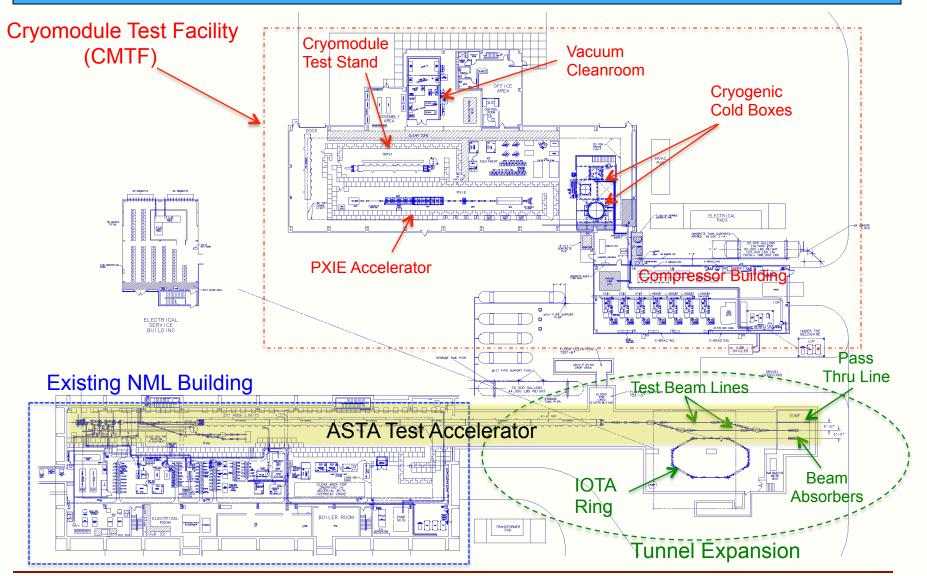


- Goal: Build a prototype of the first ~15-30 MeV of Project X
- CW H⁻ linear accelerator
- Beam through β =0.1 , 0.2 CM at ~15 MeV with nearly final parameters (1 mA CW, 5 mA peak, arbitrary bunch chopping

Several Papers on Project X and PXIE at IPAC 12

PXIE Layout in CMTF Building

Fermilab


- Combined Cryogenic Systems Should Have the Following Functionality
 - Operate NML/ASTA with 2 Capture Cavities and up to 6 Cryomodules (Pulsed)
 - CW Cryomodule operation is possible, but is not in current plans
 - Operate PXIE with 1 HWR and 1 SSR1 Cryomodule (CW)
 - Operate CMTS1 capable of testing 1 Cryomodule
 - 1.3 GHz Cryomodules Pulsed or CW
 - 325 MHz SSR or 650 MHz Cryomodules (CW)
 - Pressure stability <u>goal</u> 0.1 mbar (rms)

Helium cryoplants in CMTF and NML (nominal capacities)

- New Superfluid Refrigerator
 - 250W @ 1.8K or 500W @ 2K
- Repurposed SLAC CTI-4000 Refrigerator supplies LHe to NML/ASTA
 - 1500W @ 4.5K
- Repurposed Tevatron Satellite Refrigerators (2) in NML
 - 1250W @ 4.5K

SRF Test Facility Complex

Actual SRF Complex

Schedule/Milestones

Phase-1 Cryogenic System Operational (August 2007) **Delivery of First Cryomodule to NML** (August 2008) ٠ (Dec. 2010) **Cold RF Testing of First Cryomodule** ۲ **Completed Construction of NML Expansion** (April 2011) ۲ **Completed Construction of CMTF Building** (Dec. 2011) • **Beam Absorbers/Dump Installed** (Dec. 2011) ٠ (March 2012) **CM1** Testing Complete ۲ **Cold RF Testing of Second Cryomodule** (July 2012) ٠ (2011 - 2012)Install Injector & Test Beam Lines • First Beam (2012)• **New Cryoplant Installation/Operation** (2013 - 2014)۲ (2013 - 2014)Install 3 Cryomodule String ٠ **RF Unit Test with Beam (S2)** (2014)۲

Thanks to...

The Entire ASTA/NML Team!

