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Introduction

Ultrafast dynamic processes

Ultrafast dynamic processes in materials, i.e.
Phase transition/structure transformation in solid state,

Chemical reactions in molecules,
Energy transfer in biology, and so on,

are occurred on femtosecond time scales over nanometer (even atomic)
spatial dimensions.

» The direct observation of such ultrafast dynamic processes has long
been a goal in science.

» Ultrafast techniques with femtosecond time resolution are required.



Ultrafast Techniques

1) Ultrafast X-ray diffraction/image

Picosecond X-ray pulses from SR & femtosecond X-ray pulses from FEL
or laser plasmas acceleration have been used.

— big experiment/measurement,
large energy deposited — large damage to specimens.

2 ) Ultrafast electron diffraction (UED)

A fs laser pulse is used as pump, while a fs or ps e bunch is used as probe
Short keV e beam with pulse length of 400-600 fs have be used in low-energy UED.

Recently, the time resolution has been achieved to 100 fs or less using RF gun.

3 ) Ultrafast electron microscopy (UEM)

UEM can observe the dynamics of structure transformation in nanometer (even
atomic) spatial dimensions.

— Recently, the resolution of ns-nm or ps-um has been achieved in 100-keV TEM.
MeV UEM using RF gun is being developed at Osaka University.



2. Femtosecond RF gun



Why RF gun in UED & UEM?

Most of UED systems are used the photocathode-based DC gun.
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v'Beam energy : 30~100keV (Max. DC field=10~12 MV/m)
v'Bunch length :  400~600fs at e number of 103~10% e/pulse



Why RF gun in UED & UEM?

Problem#1: Strong space-charge force in low-energy e bunch.

1) Increase of bunch length during beam transport
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If we transport a 30 keV e- beam to a distance of 40 cm,
the bunch length is increased from fs to a few ps.

2) Increase of energy spread during beam transport
dl

O de
AE/E — 3x1073 for transporting to 40 cm.

AE,=~mvoAv=mv

It is difficult to obtain a 100 fs e- bunch with energy
spread of AE/E<1073 using DC guns.

B. J. Siwick et al., JAP 92, 1643(2002)
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Why RF gun in UED & UEM?

Problem#2: Small number of electrons.
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To reduce the space-charge effect in low-energy UED system,

»minimize the distance between sample and cathode: 4~5 cm
»decrease the number of electrons in bunch

400 fs at 1,000 e/bunch

VIt is difficult to observe the ultrafast dynamics with single-shot measurement.
v'The studies of low-energy UED are limited to the reversible processes.

Photocathode RF gun is a good choice
to generate a 100 fs e- beam with large e number in bunch.




Femtosecond photocathode RF gun

/ Femtosecond laser \

fs, A=266nm
Femtosecond e- bunch
~MeV, ~pC

3

RF
2856MHz, ~MW@4us

Photocathode k
Cu, Mg RF cavity,~100MV/m
(Usually 1.5-cell) /

The expected beam parameters:

o

Bunch length : 100 fs

Beam energy : 1~3 MeV

Emittance : ~0.1mm-mrad

Energy spread :  ~ 10% (10 for challenge)
e- number : 1078 e’s/bunch (1~10 pC)




Beam dynamics in RF gun

1) Longitudinal dynamics

RF field in z-axial :
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Kim, NIM A275, 201-218(1989)
Travier, NIM A340, 26-39(1994)
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E,=25~100MV/m, f=2856MHz, 1.5-cell

Energy: 1~4 MeV

= using 100fs laser,
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Beam dynamics in RF gun

2) Transverse dynamics

Emittance due to space-charge effect:

it w1 i p U Gaussian distribution beam
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Emittance due to RF effect:
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New femtosecond RF gun at Osaka Univ.

» A typical 1.6-cell S-band RF gun (BNL type gun-1V) is used in the most of MeV UED
facilities.

BNL type gun-IV
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New femtosecond RF gun at Osaka Univ.

» A typical 1.6-cell S-band RF gun (BNL type gun-1V) is used in the most of MeV UED
facilities.

»To reduce dark current and make a high-quality RF cavity, a new femtosecond RF gun
was developed in 2010 at Osaka Univ. under the collaboration with KEK.

Improvements:

eremove two laser injection ports
*a new turner system
enew structure cavities
°a hew insertion function of photo-
cathode

(The photocathode is removable)

The mode separation between T mode and
O mode is increased up to 8.5 MHz.

The Q value is increased up to 14,500.




Femtosecond e bunch generated from RF gun

Simulation studies of low-charge e-beam in RF gun
(Q=0.1pC/bunch)
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»The laser spot size does not effect the bunch
length and energy spread at low-charge.

MeV fs e- bunch




Femtosecond e bunch generated from RF gun

Experiment studies of femtosecond e- beam in RF gun
(exp. conditions: 200 fs UV laser, 30° gun phase, 3MeV)
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»The bunch length, longitudinal and transverse »For a copper cathode, the thermal emittance can be
emittance of femtosecond e- beam are dominated En =0, /i = 0.18mm - mrad
m,C
by the bunch charge, if we increase to >1 pC. .
y € P E,. =hv—g¢+a,/BE,sin 6 =0.26eV
>The thermal emittance at Cu cathode increases >Reducing laser spot size to 0.1mm,
linearly with the laser spot size. £, < 0.1lmm-nmrad

It is possible to generate a 100fs e- bunch with energy spread of 10 and emittance of 0.1 um using RF gun.




3. RF gun based MeV electron diffraction



First UED demonstration using RF gun

First MeV UED experiment at SLAC in 2006: Hastings, et al. APL 89, 2006
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RF gun based MeV UED in UCLA

Schematics of UCLA Pegasus setup
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! 1 Single shot diffraction pattern
v'80 MV/m field in RF gun,

v'3.5 MeV electron energy, [EEMELaES
v'106-107 e-’s in bunch
v'<100 fs at sample
v'Single-shot meas.

v'RF streaking cavity

Courtesy of Pietro Musumeci

Laser induced heating and melting of
single crystal gold samples (APL, 2010)
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RF gun based MeV UED at Tsinghua Univ.

Courtesy of W. H. Huang, C. X. Tang
RF gun based UED at Tsinghua Univ. since 2009
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Laser heating and melting of gold samples
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v'2.5 MeV electron energy, 2.8 mm-mrad,

v'3.6x10° e-'s in bunch (0.58 pC)

v'Single-shot measurement

v Time-resolved measurement using RF streaking cavity technique

Measured with RF streaking cavity



RF gun based MeV UED in BNL/Tuaotong Univ.

Court fX J W
Schematics of UED in BNL/Shanghai Juaotong Univ. it ang

magnetic
solenoid X. ). Wang, Phys. Rev. E 54, R3121 (1996).

uv [ detector
|

Single-shot

aX.J. Wang, Femto-Second Transmission Electron Microscope
Based on Photocathode RF Gun, BNL LDRD 01-39(2000).
aX. J. Wang et al, PAC’03, 420-422 (2003).
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RF gun based MeV UED in BNL/Tuaotong Univ.

Court fX J W
Schematics of UED in BNL/Shanghai Juaotong Univ. it ang

magnetic f
sdgmk, X. ). Wang, Phys. Rev. E 54, R3121 (1996). TaSe, Super-Lattice

uv I detector

v Single-shot diffraction with 5C. ~ §:%] ; - g C e

v’ Signal to noise ratio > 200. i b it

v’ Timing jitter ~ 100 fs I

v Pump-probe experiment with ~100s £ °**] "'ﬁ*“"a" |
fs time resolution. S i
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RF gun based MeV UED in DESY

Courtesy of Klaus Floettmann
REGAE: The Relativistic Electron Gun for Atomic Exploration

Buncher

Solenoids

Cathode
System

First beam at REGAE
11/14/2011

»




RF gun based MeV UED at Osaka Univ.

use of electron optical lenses as like in electron microscopy

RF gun Aperture
1-5MW@4ps,10Hz  P0.3mm Scintillator
2856MHz I
, Solenoid /
| é
i 1 }]
| | |
Probe 3w: Pump 2w:
257nm,90fs,  385nm,90fs, ~ Diffraction
1kHz, 6mW 10Hz, <40mJ/cm?
Pump 2w
600um,
Probe 3w | 1(;) 20 pirgl
[ > ————————— —:
3MeV 10Hz \
100 fs e- pulse aperture
4.5x107 e/pulse ®0.3mm Si crystal-‘ diffraction




Picture of .fs MeV electron dif‘Frac_tion

2.5 m

Difference with other UED facilities (i.e. UCLA, Tsinghua Univ., BNL, DESY):

use of electron optical lenses, therefore, compact.




Detection of MeV electron diffraction

Requirements of MeV electron detector: high resolution, high efficiency, no damage

Problems

* Very low current, i.e. ~pA
* Small scattering angle, i.e. 0.1mrad
 Strong X-ray emissions,

i.e. Backgnd, pixel defect
* Damage by MeV electron,

l.e. scintillator, fiber
» Diff. Pattern to be magnified/shifted

s

MeV electron

| '|l f L
I [ ;
6.45um/pixel \\ } llh'k ‘
|
( .

— Csl (TI) scintillator

(Hamamatsu)
e[llu. Vol.(<50um)

* Bright
* High resol.
(Column Structure)
|| » Tough
|| (for High E Xray)
e Large: bxbcm

Solution

e Csl: Small lllumination volume
size-matched to CCD pixel
* Indirect exposure

Thin mirror + Lens coupling

* No pixel defect observed yet
* Large detection area, i.e. 5x5cm?




Quality of MeV electron diffraction

Electron beam: 3 MeV, 8.9x10”e/cnt / pulse
Sample: 180nm-thick single crystal Si Intensity profile of 620 pattern

Si<001> T ]
[ q,,, >1.56A-1

—

convergence angle’
~5.0x10-5 rad

(620)

A J

=1 0 1
SCATTERING VECTOR (A™)

20 shots(2s)
A high-quality MeV ED was observed!

« Beam convergence angle: 0.05 mrad R * Bragg law
2dsin €= nA

tanH:E
L

« Maximum scattering vector : q,.., >1.56A1

* Requirement of the e number: 1067

- A

Y. Murooka, et al., Appl. Phys. Lett. 98, 251903 (2011)




Power of the technique: static diffractions

e Single-shot measurement

Si 1 shot (0.1s) Au
. single crystal
Thickness: 20nm

1 shot (0.1s)

single crystal
Thickness: 180nm

e- energy: 3MeV e- energy: 3MeV

Y. Murooka, et al.,
Appl. Phys. Lett.
98, 251903 (2011)

» Metal (Al e [nsulator (Mica)

* Single crystal (~100s nm)
K(Fe,Mg)5(AlSi;0,,)(OH,F),

e polycrystal (100nm)

oo % Eeiifiisitaliil
o | % :_. ﬁ‘{%\ ﬁioj
- %e fZ)C 1 iE;“ ;:l Fe, Mg a
Large scattering vector % No charging effect

Umax (Difficult at Low Voltage)



RELATIVE INTENSITY

Al

1.2

Time-resolved measurement #1

Dynamics of phase transition in single-crystal Si

- ~35nm
- 3.5mJ/em? ! |

TIME DELAY (ps)

The intensity of diffraction
pattern increases due to
the lattice heating, if

E //[110]

The intensity of diffraction
pattern decreases due to
the lattice heating, if




Time-resolved measurement #2

Laser heating and melting dynamics of single crystal Au

after melting



Time-resolved measurement #2

Laser heating and melting dynamics of single crystal Au

1.2F

1.0F

I 200

after melting



»The UED experiments indicate that the RF gun based MeV
UED is powerful tool for the study of ultrafast dynamics with
time resolution of 100 fs or less.

»However, there is no spatial resolution in UED

»To achieve both the time and spatial resolutions, i.e. fs-nm,
a time-resolved electron microscopy is required.



Femtosecond MeV electron microscopy using RF gun
(MeV UEM)

(under development at Osaka Univ.)



Concept of MeV UEM

50-fs laser pulse

50um spot

— ~— aperture-2

Specimen — 10um spot

aperture-3

Specimen

Objective
lens

Intermediate
lens

Projector
lens

Image screen
(1024x1024 pixels)



Prototype of
femtosecond MeV transmission electron microscopy

Femtosecond Femtosecond
electron ] | Laser photocathode
optical -] i [}——Femtosecond electron gun g
lenses

3m _, Electron energy : 1~3 MeV
——— Bunch length : =100 fs
2 Emittance : < 0.1mm-mrad
" yTY Energy spread : 104 (10° for challenge)
_ Charge : 10’~108e”s/pulse
image
meas. Time resolution: <1ps

Spatial resolution: ~10s nm

| ——
Prototype of MeV UEM hallenged




Next TEM

Standard 3-MeV TEM
at Osaka Univ.

/

First compact )
MeV Transmission Electron Microscopy

With functions of

TEM (nm or sub-nm, MeV)
+

time resolved (femtosecond)

Dream electron microscopy!




Concluding remarks

v'The photocathode RF gun is a powerful source to generate directly a 100 fs
electron beam with emittance of ~0.1 um

v'The femtosecond RF gun is very useful for ultrafast MeV electron diffraction.
VIt is expected to be used in high-voltage time-resolved electron microscopy.

However, great efforts and many challenges are required:

»reduce further the emittance (<0.1 um) and energy spread (107 or less),
»improve the stabilities on the charge and energy,

»reduce the synchronized time jitter,

»develop a detection of very electron with MeV energy region.
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