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Outline

• Symplectic tracking based on analytic generating functions

• Analytic description of arbitrary undulator fields

• Potential applications to other magnet structures

• Analytic equations for dynamic field integrals 

• Benefits and limitations of shimming techniques
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J. Bahrdt, G. Wüstefeld, Phys. Rev. ST Accel. Beams 14, 040703 (2011)  



Advantages of analytic tracking scheme:
extremly fast (CPU time reduction of 1-2 orders of magnitude)
full parametrization of 3D fields in all operation modes

UE112 APPLE II Undulator at BESSY II

Motivation for Symplectic and Fast Tracking Scheme

Complicated 3D field
Huge dynamic effects for:

- long period length
- low energy (1.7GeV)

Large operational
parameter space:
- energy (gap)
- polarization (phase)
- compensation of

beamline effects
(universal mode)

3



4

Two approaches for deriving the generating function 

Numeric approach
• fast and symplectic, full turn FFAG orbit tracking 

H. Lustfeld, Ph. F. Meads, G. Wüstefeld et al., LINAC 1984
• tracking of superconducting wave length shifter (strong field devices) 

M. Scheer, G. Wüstefeld, EPAC 1992

Analytic approach
• tracking of undulators (nonlinear, weak fields)

J. Bahrdt, G. Wüstefeld, Proc. of PAC, San Francisco, USA (1991) 266-268
J. Bahrdt, G. Wüstefeld, Phys. Rev. Special Topics, A & B 14, 040703 (2011)

Very simple interface between field simulation and tracking
e.g. for an APPLE II:

- about 30 Fourier coefficients & transverse expansion width
- phases ߰ଵ (elliptical), ߰ଶ (inclined), ߰ଵ and ߰ଶ (universal mode)
- magnetic gap
- distance of magnet rows

History



Differential Expressions of Equations of motion
Lagrange Euler equation

2nd order DEs in N variables:

Hamilton’s equations of motion       
1st order DEs in 2N variables:
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Euqivalent Descriptions of Stationaritity of Action

ݍ߲ܮ߲ െ ݐ݀݀ ሶݍ߲ܮ߲ ൌ 0
ݔ߲ܪ߲ ൌ െ݌ሶ௫ ݕ߲ܪ߲				 ൌ െ݌ሶ௬ 						 ௫݌߲ܪ߲ ൌ ሶݔ 						 ௬݌߲ܪ߲ ൌ ሶݕ

Qi,Pi qf,pf
zf

z

ݖଷ߲ܨ߲ ൅ ܪ ൌ 0Integral Expression: Hamilton-Jacobi Equation
permits step sizes as long as undulator length
always symplectic

z



Hamiltonian of relativistic particle in a magnetic field:ܪ෩ ൌ ሺ݌෤Ԧ െ ሚԦሻଶܿଶܣ݁ ൅ ݉଴ଶܿସ
Canonical variables: ݔ, ,ݕ ,௫݌  ௬, and independent variable t݌
Hamiltonian is independent upon t. 

Change independent variable:     time t               distance z 
to enable further transformation to cyclic coordinates; new Hamiltonian:

෡ܪ ൌ െ݌෤௭ ൌ െ ෩ଶܿଶܪ െ ݉଴ଶܿଶ െ ෤௫݌ െ ሚ௫ܣ݁ ଶ െ ෤௬݌ െ ሚ௬ܣ݁ ଶ െ ሚ௭ܣ݁
Normalization and 2nd order expansion in ݌௫, ,௬݌ ଷݔ
߷ܤ݇/ଷ~1ݔ small quantity in undulators; well suited as expansion variable
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The Hamiltonian
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Canonical transformation to cyclic coordinates with generating function:

Substitution:

The Hamilton-Jacobi Equation (HJE) has the form:

Insert Taylor series expansion Ansatz of generating function in HJE

expansion variables: ࢌ࢞࢖, ,ࢌ࢟࢖ ૜࢞
Each individual expansion term must be zero.
Iterative solution and determination of z-derivatives of ௜݂௝௞
Integration of ߲ ௜݂௝௞/߲ݖ along z yields generating function.

Algebraic code (e.g. REDUCE) can be used to derive 
generating function analytically from analytic vector potential

௫ܲ௜ ൌ െ ଷ߲ܳ௫௜ܨ߲ ൌ െܨଷ௫										 ௬ܲ௜ ൌ െ ଷ߲ܳ௬௜ܨ߲ ൌ െܨଷ௬	
02/)(2/)(1 33

2
33

2
33 =+−−−+−−+− zzyyxx FxAxAFxAF

,ଷሺܳ௫௜ܨ ܳ௬௜, ,௫௙݌ ௬௙ሻ݌

=
ijk

kj
yf

i
xijk xppfF 33

Expansion of Analytic Generating Function

7



In 2nd order expansion (plus f003 term)
the generating function (GF) has the form:

Once, the GF in terms of 
initial coordinates and final 
momenta is known, this set 
of 4 equations can be solved
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In 2nd order (1st order in momenta) equations can be solved explicitly: 

with pn = (1−f011y)(1−f101x)−f011xf101y 



In 2nd order expansion (plus f003 term)
the generating function (GF) has the form:

Once, the GF in terms of 
initial coordinates and final 
momenta is known, this set 
of 4 equations can be solved
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In 2nd order (1st order in momenta) equations can be solved explicitly: 

with pn = (1−f011y)(1−f101x)−f011xf101y 

Note: Procedure is not limited to 2nd order in 
the momenta, however, iterative  techniques 
(e.g. Newton Raphson Method) are required 
to solve the set of implicit equations 



Analytic expressions of the vector potential are required 
since GF is derived from analytic integrations over z

2nd order terms:

The following 3rd order term improves accuracy:

Generating Function Expansion Coefficients

଴݂଴ଷ ൌ 12න ݕ߲߲ න ௫ଶܣ ൅ ௬ଶܣ ݖ݀ .ᇱݖ௬݀ܣ
൅ 12න ݔ߲߲ න ௫ଶܣ ൅ ௬ଶܣ ݖ݀ ′ݖ௫݀ܣ

଴݂଴ଶ ൌ െሺ1/2ሻන ௫ଶܣ ൅ ௬ଶܣ ,ݖ݀
଴݂଴ଵ ൌ 0,							 ଵ݂଴ଵൌ නܣ௫݀ݖ, 								 ଴݂ଵଵ ൌ නܣ௬݀ݖ,
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Example I: Planar Undulator Structure

Scalar potential of a Halbach type undulator:

Derivation of vector potential from scalar potential

which is

Generating Function 

Method can easily be extended to a sum over Fourier component
Assumption of linear superposition of fields (permeability = 1) justified for ppm
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Magnet structure of
BESSY II  U125 



Fourier expansion of fields
- longitudinally
- transversally

Derivation of Fourier coeffifficients
- undulator: 

single trans. field distribution
- wiggler:

seveveral trans. field distributions
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solve system of
linear equations

(1,5,9… for ppm structure)

Field reconstruction using different 
numbers of harmonicsJ. Bahrdt et al., IPAC 2011
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Contributions from 4 magnet rows:

Example II: APPLE II Undulator
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Asymmetric Figure 8 
undulator for linear / helical 
polarization and reduced 
on-axis power density

Example III: Asymmetric Figure 8 Undulator

Courtesy of B. Diviacco

௫ܣ ൌ෍ܿ௜݇ ሺሺܿݏ݋ሺ݇௫௜	ሺݔ െ ሻ	/2ሻ	଴ݔ ∙ ݊݅ݏ ݖ݇ ൅ ଵߞ ൅ஶ
௜ୀ଴ܿݏ݋ ݇௫௜ ݔ ൅ ଴/2ݔ ∙ ݖሺ݇݊݅ݏ ൅ ଶሻሻߞ ∙ 2ሻ/݃߂ሺെ݇௬௜݌ݔ݁ ൅ሺሺܿݏ݋ሺ݇௫௜	ሺݔ െ ሻ	ሻ	଴/2ݔ ∙ ݊݅ݏ ݖ݇ ൅ ଷߞ ൅ܿݏ݋ ݇௫௜ ݔ ൅ ଴/2ݔ ∙ ݖሺ݇݊݅ݏ ൅ ସሻሻߞ ∙ 2ሻሻ/݃߂ሺ൅݌ݔ݁ ൅

෍݀௜݇෨ ሺcosሺk෨୶୧	x	ሻ ∙ cos ෨݇ݖ ൅ߞହ ∙ ሺെ෨݇௬௜Δ݃/2ሻஶ݌ݔ݁
௜ୀ଴ ൅ሺcosሺk෨୶୧	x	ሻ ∙ cos ෨݇ݖ ൅ ଺ߞ ∙ expሺ ෨݇௬௜Δ݃ 2⁄ ሻ

݇௬௜ ൌ ݇௫௜ଶ ൅ ݇ଶ, ෨݇௬௜ ൌ ݇௫௜ଶ ൅ ෨݇ଶ, ෨݇ ൌ ݇/2 ൌ  ,଴ߣ/ߨ2

T. Tanaka, H. Kitamura, 
Nucl. Instr. and Meth. in 
Phys. Res. A 449 (2000) 629-637

Different period lengths
of inner and outer arrays

Similar expression for Ay, and Az=0  14



Tracking of Undulator Ends

B) Extrapolation of vector potential at undulator ends
vector potential of each magnet row:ܣ௫,௜ ൌ ݖ௫଴,௜sinሺ݇௭ܣ ൅ ௬,௜ܣ௜ሻߞ ൌ ݖ௬଴,௜sinሺ݇௭ܣ ൅ ௜ሻߞ

௫ܣ ൌ෍ܣ௫,௜ ൌସ
௜ୀଵ ݖ௫଴sinሺ݇௭ܣ ൅ ௫ሻߞ

௬ܣ ൌ෍ܣ௬,௜ ൌସ
௜ୀଵ ݖ௬଴sinሺ݇௭ܣ ൅ ௬ሻߞ

Two methods:

A) Each end consists of 2 half periods
- transverse and longitudinal features

similar to periodic part but 
- scaled with ¼ and -¾  

࢞ ࢟

start integration of Ay
start integration of Ax

periodic part

B -3B 4B -4B
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Tracking of Undulator Ends
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implemented in
Elegant (A. Xiao)
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UE112 shimming effect

x-kick per ID passage (vertical linear mode)
particles distributed on horizontal phase 
space ellipse, semi axes: 30mm / 1.87mrad

red:   no shims
blue:  wire shims powered

BESSY II: 1000-turns tracking (x-x’-plane)

frequency
map

Bahrdt, Scheer& Wüstefeld
Proc. of EPAC (2006) 3562-3564

Particle Tracking for BESSY II UE112 APPLE II

30mm

40
0u

ra
d
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Application to other Systems:
Multipole Magnets Including Fringe Fields

Rewriting the formalism in cylindrical coordinates and follow same procedure:

ܪ ൌ 12݉ ௥݌ െ ௥ܣ݁ ଶ ൅ ଶݎ1 ఝ݌ െ ఝܣݎ݁ ଶ ൅ ௭ଶ݌
ܪ ൌ െ݌௭ ൌ െ1 ൅ ௥݌ െ ௥ܣ ଶ/2 ൅ ݎఝ݌ െ ఝܣ ଶ /2 െ ௭ܣ

ଷܨ ൌ ௙ݖ െ ݎ௥௙݌ ൅ ఝ௙߮݌ െ ௥௙ଶ݌ ൅ ఝ௙ଶ݌ ⁄ଶݎ ௙ݖ 2 ൅⁄ଵ݂଴ଵ݌௥௙ ൅ ଴݂ଵଵ݌ఝ௙ ൅ ଴݂଴ଷ ൅ ଴݂଴ଶ ൅ ଴݂଴ଵ
The generating function in cylindrical coordinates is:

where fijk include analytic expressions of
integrals and partial derivatives of the
vector potential in cylindrical coordinates
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Analytic Expressions of the
Vector Potential of Multipole Magnets 

19
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Example:
Halbach type quadrupole Longitudinal Fourier decomposition

ሻݖ௠଴ሺܩ ൌ෍ܽ௜cosሺ݇௜ݖሻஶ
௜ୀ଴

௥ܣ ,ݎ ߮, ݖ ൌ െ cos ݉߮݉ െ 1 ! ௥଴ܣ ൅෍ 14 ݉ ൅ ݌ ݌ ∙ ଶ௣ା௠ିଵஶݎሻݖ௠ଶ௣ିଵሺܩ
௣ୀଵ

ఝܣ ,ݎ ߮, ݖ ൌ sin ݉߮݉! ఝ଴ܣ ൅෍ ݉൅ 4݌2 ݉ ൅ ݌ ݌ ∙ ௠ଶ௣ିଵܩ ሺݖሻݎଶ௣ା௠ିଵஶ
௣ୀଵ∙ܣ௥଴ ൌ ఝ଴ܣ ൌ ௠ିଵݎሻݖ௠ିଵሺܩ

ఝܤ ,ݎ 0, ݖ ൌ ෍ܩ଴ଶ௣ሺݖሻݎଶ௣ାଵஶ
௣ୀ଴

Radial dependency

Bassetti and Biscari
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Bassetti and Biscari



௜ݍ

ሶ௜ݍ
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Analytic Kick Maps - Thin Lens Approximation

Kick

௜ݍ

ሶ௜ݍ

ሶݍ ௜௡௘௪=ݍሶ௜௢௟ௗ ൅ܹሺݍ௜ሻ
The kickmap is easily derived from the generating function coefficient f002 

where f002 depends upon a set of Fourier coefficients

xfx ∂∂= /002θ y/f002y ∂∂=θ



The integrated dynamic kicks due to the wiggling motion in undulators
follow directly from generating function:

analytic kick map

Dynamic Kicks in a Planar Undulator
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transverse Fourier coefficients

- for undulators: m=1 is sufficient
- high field wigglers require inclusion

of higher field harmonics (m >/= 3)
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The 3rd field harmonic has to be 
included for a a field reconstruction
on the percent level

For undulators usually 1st field harmonic
is sufficient

Shimmed device

U125-2 Magic fingers

BESSY II U125 Wiggler II

Theoretic dynamic 
field integrals
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Elliptical mode

Similar analytic expressions for inclined and universal mode, for details see PRST

Dynamic Kicks of APPLE II Undulators
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analytic functions of row phases

terms include magnetic gap

transverse Fourier coefficients

Successful shimming of weak devices with L-shims 
based on analytic kick maps
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Active Compensation of Dynamic Kicks 
with Flat Wires: BESSY II UE112 APPLE II
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UE112: Tune Shift and Beam Size Variation

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

-10 -5 0 5 10

x [m]

ho
riz

on
ta

l t
un

e [
kH

z]

910

920

930

940

950

960

970

-10 -5 0 5 10

x [m]

ve
rt

ica
l t

un
e [

kH
z]

Horizontal and vertical tunes
vs horizontal displacement:
black: tune correction off, wires off
blue: quad correction on, wires off
red: no quad correction, wires on
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Source size variation with row phase of the 
UE112 at gap = 24mm in the inclined mode. 
Black, blue: currents switched off; red, 
magenta: currents switched on.

Recovery of injection efficiency 
in inclined mode

Results for UE112 are achieved
using analytic kick maps
without further iteration.
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Static multipoles: 
Complete description of two dimensional straight line field integral distributions
on a source free circular disc                      

is an analytic function; the bar indicates a straight line integration

Cauchy Riemann relations:                             are equivalent to the
2D-Maxwell equations 

“Dynamic multipoles” (DM):
is not an analytic function; the tilde indicates an integration
along a wiggling trajectory

Cauchy Riemann relations
are not fullfilled:

Note: By principle “dynamic multipoles” can not be compensated 
with shims which are usually described by static field integrals

Static Multipoles and so-called „Dynamic Multipoles“
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Shimming of „Dynamic Multipoles“

Why does shimming of DM work at all?

Shimming of DM in the midplane has no principle limitations, but
vertical off-axis effects are enhanced; this is acceptable because:

• usually, vertical beta-function smaller than horizontal beta functions
• usually vertical emittance smaller than horizontal emittance
• large particle amplitudes occur during horizontal injection 

What about gap dependency?

DM are expected to drop off much faster 
than shim field integrals due ܤଶ dependency, but:

• detailed considerations show similar gap dependence of 
dynamic multipoles and static multipoles for long period lengths

• DM scale with square of period length; Murphy’s Law does not apply 
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Summary and Outlook

Fast analytic, symplectic GF-based tracking scheme
one step per undulator is possible

Analytic description of undulator fields and shim field integrals
simplifies interface

APPLE undulator implemented in Elegant, other devices straight forward

Multipoles with fringes fields will be implemented soon
dipole with fringe fields needs specific Hamiltonian along bent orbit

Analytic kick maps derived from analytic generating function
used for evaluation of shim strength


