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Marrying Lasers and Particle Beams

Luca Serafini – INFN Milan

• Common Aspects of Laser and Particle Beams: Brilliance, 
Brightness, Phase space density, e.m. field intensity

• Interactions: to exchange informations (diagnostics), to 
exchange energy/momentum (laser based accelerators, vs. RF), 
to exchange order (coherence) or disorder (heating)

• 3 Examples of interactions in vacuum: 
Seeded FEL,    Inverse FEL,    Compton Sources

• Future directions



IPAC12, New Orleans (USA), May 25th 2012

z
σ0 β∗

σ0’=σ0/β∗

x

x’

σ

σ0’low

σ0’high

σ0 =
ε nβ*

γ
 ′ σ 0 =

ε n

γβ*

Lasers are Beams and propagate in free space, under the effect of 
diffraction, just like particle beams under the effect of their emittance

σ0 ′ σ 0 =
ε n

γ

εn >>  εn 

σ z( ) = σ0 1+
z2

β*2 = σ0 1+
ε n

2

γ 2σ0
4 z2



TEM00 Gaussian Laser mode
(circular polarization M2=1 diffraction limited)
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The Figure of Merits for Lasers and Beams

Marrying Lasers and Particle Beams
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BELLA

APOLLON laser
for ELI
• 2·10 PW
• 15 fs
• ~ 1/min
• 1024 W/cm2

• a0= 35 
• 2.5x103 TV/m
(Schwinger’s field   
106 TV/m)

•BELLA 1 PW
•5x1022 W/cm2

•1 Hz
•a0= 10
•600 TV/m

Electric field carried by laser E⊥ ∝ I

Courtesy G. Mourou IPAC12, New Orleans (USA), May 25th 2012



e.m. field carried by the electron bunch
With 2 fs LCLS beam we have 
For 2-20 pC beam, we have 1 TV/m fields (!)

PWFA Plasma Acceleration

OOPIC simulation of LCLS case

1 TV/m accelerating field: a dream for a 
table-top TeV-class e-e+ collider?
1 TV/m accelerating field: a dream for a 
table-top TeV-class e-e+ collider?

Er
edge =

η0I
2πσ
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Longitudinal Phase Space distributions show violent blow-up of
uncorrelated energy spread due to transverse space charge field

(electrons are fermions…)
158 μm from plasma
exit, about 3 gain lenghts

Er
edge =

η0I
2πσ

  I = 20  kA; σ =1 μm   Er
edge =1 TV /m



IPAC12, New Orleans (USA), May 25th 2012

Seeding a High Gain Free Electron Laser: 
transfer coherence from the Laser to the FEL radiation 

through the Electron Beam

Marrying Lasers and Particle Beams





Ti:Sa 
Regenerative Amplifier

Periscope & 
injection chicane

In vacuum
spectrometer 
550-40nm

HHG generation Chamber



• Seed an FEL cascade with harmonics generated in gas

• Study the evolution of the signal while varying the 
number of radiators/modulators

Seed λ1

Modulators

λ2= λ1/n, n=2

Radiators
IPAC12, New Orleans (USA), May 25th 2012
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Infrared

Seeding with 
harmonics generated in 

gas (Ar)



Infrared

Dec. 2007

Infrared
GAS Cell

Differential vacuum

to Undulato

Focusing mirrors

Seeding with 
harmonics generated in 

gas (Ar)



Varying the number of radiators
Transition from CHG 
to HGHG
Transfer the coherence 
of the seed to higher 
harmonics
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• All the UM tuned at the same resonant 
wavelength (400nm)

• Induce superradiance by seeding the FEL 
amplifier at saturation intensity

IPAC12, New Orleans (USA), May 25th 2012



Seed Energy < 0.5 uJ

Direct seeding
Superradiant regime @ 400 nm, <0.5 uJ – 9 uJ - 6 UM tuned at 400 nm
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High harmonics down to 37 nm

Measured energy per pulse, spot size & and bandwidth of the first 11° harmonics
IPAC12, New Orleans (USA), May 25th 2012
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Other example of Coherence Transfer
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SPring8 Compact Sase Source (SCSS)
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Inverse Free Electron Laser:
transfer energy from the Laser to the Electron Beam 

through the FEL radiation

Marrying Lasers and Particle Beams



IFEL Interaction

Undulator magnetic field to couple high power radiation 
with relativistic electrons

wmck
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≅ ⋅ + ⋅  

Significant energy exchange between the 
particles and the wave happens when the 
resonance condition is satisfied.

In an FEL energy in the e-beam is 
transferred to a radiation field

In an IFEL the electron beam absorbs 
energy from a radiation field.

High power laser
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Useful scalings for IFEL accelerator

Assuming no guiding and a single stage helical undulator
The ideal relationship between the Rayleigh range and the total undulator length is

ru zL 6≈

In order to have the final energy 500 MeV (γf
2 = 106) with a

1 (0.8)um laser, zr = 15 cm and K ~ 4  The laser power P needs to be
5 TW or higher

KWPzKPz
mc

Ze rr )(106212 4
2

002

λλ
γ −⋅≅≅Δ

Final energy (assuming a const. K, or taking the average value for K) will be given by 

A tight focus increases the intensity, but only in one spot.
A large zr maximizes the gradient over entire undulator length

IPAC12, New Orleans (USA), May 25th 2012
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Beam loading
Take as an example the case of a 1 GeV accelerator
The laser power P needs to be 20 TW or higher 

20 J in 1 ps4 J  in 200 fs 100 J in 4 ps

Energy is linear with accelerated charge
1000 MeV x 100 pC = 0.1 J
1000 MeV x 1 nC = 1 J

Need to choose laser pulse length/energy based on these considerations.

Slippage problem.
Pulse length / optical period has to be larger than number of 
periods in undulator.

IPAC12, New Orleans (USA), May 25th 2012



From proof-of-principle to 2nd

generation IFEL experiments

• Proof-of-principle experiments 
successful

• Upgrade to significant gradient and 
energy gain
– Technical challenges: 

• staging
• very high power radiation
• strong undulator tapering

– Physics problems:
• microbunching preservation
• include diffraction effects in 

the theory
• beyond validity of period-

averaged classical FEL equation
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Cryogenic undulator + 20 TW laser power “green-field” design

If gap is maintained large one can adopt a fully permanent 
magnet design (no iron poles)

Optimization keeping resonant phase at 
45 degrees
Compromise between capture and gradient
6 mm gap

Initial energy 50 MeV 

Final energy 1200 MeV

Avg gradient 1.1 GV/m 

Final energy spread 1 % 

Laser wavelength 800 nm 

Laser power 20 TW 

Laser spot size (w0) 0.2 mm 
 

 



High Gradient High Energy Gain Inverse Free 
Electron Laser 

 Renovated interest in IFEL acceleration scheme
 Applications as compact scheme to obtain 1-2 GeV electron beam for gamma 

ray (ICS) or soft x-ray (FEL) generation.

P. Musumeci et al.

Radiabeam UCLA BNL 
IFEL Collaboration 

Strongly tapered optimized 
helical permanent magnet 
undulator

ATF @ BNL
0.5 TW CO2 laser
50 MeV -> 180 MeV in 60 cm
130 MeV energy gain
220 MV/m gradient

LLNL-UCLA IFEL 
experiment

Reuse UCLA- Kurchatov 
undulator

Use 5 TW 10 Hz Ti:Sa
50 MeV -> 150 MeV in 50 cm

High rep rate allows beam 
quality measurement

GeV IFEL experiment 

If current experiments succesfull

Looking for access to facility with 
50 MeV beam+20 TW laser
(BNL, LLNL, LNF-Italy)

Praesodymium based cryogenic 
undulator
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Inverse Compton Scattering:
the Photon Accelerator

frequency Doppler/Lorentz upconversion by the 
Electron Beam of the Laser Photons

where the phase space densities of the two colliding 
beams are mapped into the gamma photon beam

Beams of γ, not just one photon per shot   

Marrying Lasers and Particle Beams



Classical model

Relativistic electron

Laser pulse
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Head-on  scattering
Radiation on axis

Relativistic electron

Laser pulse

IPAC12, New Orleans (USA), May 25th 2012

M 2λ
4π

≈ 8.*10−8  vs.  
εn

γ
Thomson[ ]≈ 5.*10−8    and   

ε n

γ
Compton[ ]≈ 5.*10−10



Classical double differential spectrum

From the electron orbits and the Liénard-Wiechert far zone 
the expression to calculate the radiation field [Jackson..] for 
one electron is: 
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The previous expressions are at the basis of the semi-analytical
classical non linear code TSST
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And for all the beam:

IPAC12, New Orleans (USA), May 25th 2012
P. Tomassini et al., IEEE TRANSACTIONS ON 
PLASMA SCIENCE, VOL. 36, NO. 4, AUGUST 2008
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and A. Variola
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Quantum cross-section for electron-photon interaction
(Klein and Nishina)

Dirac Equation: ψ+=
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CAIN (quantum
MonteCarlo)
Run by I.Chaichovska
and A. Variola

TSST (classical)
Developed by
P. Tomassini

Comp_Cross (quantum
semianalytical)
Developed by V.Petrillo

COMPARISON between classical (TSST), quantum
semianalytical (Comp_cross) and quantum MonteCarlo (CAIN)

Number of
photons

bandwidth
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A part from the quantum shift, the spectra are very similar
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Analytical Model based on Luminosity
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electron beam laser

Optimized  Bandwidth ≅ (εn /σ x )2

Maximum  Spectral  Density ∝ Luminosity /(εn /σ x )2 ∝ Q /εn
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Maximum  Spectral Density ∝ Phase  Space density ηn



Gamma − ray Energy :  1− 20 MeV

Bandwidth :  0.3% →0.1%

Spectral  Density :   104 →106  photons /sec/eV

Gamma-ray Source Specifications

1-2 orders of magn. better than state of the art

HiGS (bdw 3%, sp. dens. 102, E < 8 MeV)

rms  divergence < 200 μrad
(spot  size  <  5  mm  at  target)
controllable > 98% polarization

IPAC12, New Orleans (USA), May 25th 2012



ηn ≡
Q
ε n

2

S-120

C-170  X-200

C-200

C-240

Best laser
plasma beams
(exp, sim)

S-120 LCLS (exp)

L-60 TESLA (exp)

LLNL-MegaRay (sim)

ELI-NP γ-source Eur. Prop. (sim)

Transverse Phase Space Density (round beams) : 
the chart (RF Photo-Injectors vs. Plasma Inj.)

ηn ≡
Q
ε n

2   
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mm⋅ mrad( )2

 

 
 

 

 
 

Q [pC]

0.1-1 psec bunches
RF

fsec bunches
laser-plasma
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Number of
photons

bandwidth

Scaling laws
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In Vacuum Acceleration

Marrying Lasers and Particle Beams



The Far Future?
The Perfect Beam Marriage in Vacuum 

WEPPP008

Challenge for Phase Space Density
of Injected Beam at low energy (time jitter)
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Angular and Frequency Spectrum
(560 MeV electrons)
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electrons laser

z
σ β

σ’=σ/β

x

x’

σ

σ’high

σ’low

Scattered photons in collision

• Scattered flux
• Luminosity as in HEP collisions

– Many photons, electrons
– Focus tightly 

• Scattered flux
• Luminosity as in HEP collisions

– Many photons, electrons
– Focus tightly 

σ T = 8π
3

re
2Nγ = Lσ T

 L = NL Ne−

4πσ x
2

Thomson cross-section
σT = 0.67 ⋅10−24 cm2 = 0.67  barn
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e-

X
e-

X
focus

envelope

Spectral broadening due to ultra-focused beams:
Thomson Source classically described as a
Laser Syncrotron Light Source

θ hν 50%( )= 1
γ

Scattering angle in Thomson limit (no recoil) is small, i.e. < 1/γ



X

Spectral broadening due to ultra-focused beams:
Thomson Source classically described as a
Laser Syncrotron Light Source

θ hν 50%( )= 1
γ

focus
′ σ = εn

σ 0γ

′ σ = εn

σ 0γ
<< 1

γ
   εn

σ 0

<<1   σ 0 >> εn

Limit to focusability due to max acceptable bandwidth
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FEL resonance condition

λR = λw

1+ aw
2( )

2γ 2
(magnetostatic undulator )

Example : for λR=1A, λw=2cm, E=7 GeV

λR = λ
1+ a0

2 2( )
4γ 2

(electromagnetic undulator )

Example : for λR=1A, λ=0.8μm, E=25MeV

a0 = 4.8
λ μm[ ] P TW[ ]

R0 μm[ ]

laser power

laser spot size

aw = 0.93λw cm[ ]Bw[T]
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