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Abstract
Recently, Balbekov and Burov have produced an or-

dinary integro-differential equation that approximates the
Vlasov equation for beams with wakefields and large space
charge tune shift. The present work compares this model
with simulations. In particular, the claim that certain types
of transverse wakes cannot lead to mode coupling instabil-
ities is explored

INTRODUCTION
In most low energy ion accelerators the transverse

impedance is dominated by space charge, which derives
from the mutual electrostatic repulsion of particles within
the beam. Space charge alone is purely reactive and does
not cause instabilities under conditions typical for a syn-
chrotron [1]. The effect of space charge in conjuction with
other sources of impedance is unclear. In coasting beam
theory space charge creates a large real coherent tune shift
which overcomes collisionless damping and only a small
amount of transverse resisitance is needed to cause insta-
bility. In bunched beams, with wake potentials of one
sign only, the space charge force tends to stabilize the
beam [2, 3, 4, 5, 6]. Single sign wake potientials, such
as those created by wall resistivity and matched stripline
beam position monitors always have the same sign, consis-
tent with energy absorbtion by a passive device. The stan-
dard convention is to take this sign as negative, [2] uses the
opposite convention, but this work will use the standard
convention.

SIMULATION MODEL AND RESULTS
Take the azimuth θ as the timelike variable. Consider a

bunched beam with matched longitudinal phase space dis-
tributionΨ(τ, v) where τ is arrival time with respect to the
synchronous particle and v = (1/Qs)dτ/dθ. Set ρ(τ) =∫

dvΨ(τ, v) and normalize so that
∫

dτρ = 1. Assume a
bare tune Q0 and take the time dependence of the dipole
density to be D(τ, v, θ) = exp[−i(Q0 + ΔQ)θ]D(τ, v),
with tune shift small enough to neglect coupling between
betatron sidebands. Then,

−iΔQD(τ, v) = Qs

{
v
∂D

∂τ
− dU

dτ

∂D

∂v

}

− iΨ(τ, v)
2κQ

τ∫
τb

dτ1W (τ − τ1)
∫

dv1D(τ1, v1)
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Figure 1: Real part of eigenvalues for the hollow bunch
in a square longitudinal well versus step wake divided by
absolute value of wake at threshold without space charge.
The space charge tune shift is ΔQsc = 4Qs. For negative
(passive) wakes space charge stabilizes the beam.

+
iΔQsc

ρ(0)
ρ(τ)D(τ, v)

− iΔQsc

ρ(0)
Ψ(τ, v)

∫
dv1D(τ, v1), (1)

whereQs is the synchrotron tune,ΔQsc is the space charge
tune shift in the center of the bunch,W (τ) is the wake po-
tential, and κ is a positive constant that depends on particle
energy, charge etc. The longitudinal potentialU(τ) is taken
to be parabolic, with U = τ 2/2, or a square well. Divid-
ing through by Qs one sees thatW (τ)/Qs and ΔQsc/Qs

determine system stability.
The origin of bunched beam stabilization from space

charge can be seen most easily in the air-bag square well
model [7, 2]. In this model the RF is approximated by a
square potential well. All the particles have the same syn-
chrotron amplitude so there is a well defined synchrotron
tune, Qs. The chromaticity ξ is zero and the wakefield is a
step function. With these assumptions equation (1) reduces
to a set of linear, ordinary first order differential equations
with constant coefficients. The problem requires numerical
solution, but the solutions are exact for practical purposes.
The coherent tune shifts ΔQ are real below the instabil-
ity threshold and come in complex conjugate pairs above
threshold. Figure 1 show the real tune shifts, in units of the
synchrotron tune versus the wake strength in units of the
magnitude of the threshold value for no space charge.
From the figure it is clear that the threshold wake po-
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tential with this amount of space charge is about 9 times
higher than the threshold without space charge. The behav-
ior for positive wakes is similar to that shown in Fig 2 of
[6] whereas that reference did not consider the threshold for
negative wakes. Figure 4 of [3] considers negative wakes,
though there is a sign difference in the axes between his
plot an mine. Also, my plot shows coupling between the 0
and -1 synchrotron modes while his, for a gaussian bunch,
starts with coupling between the +2 and +3 synchrotron
modes. It is difficult to come up with a numerical compari-
son of Burov’s thresholds and mine, but some stabilization
due to space charge is present in both works. The ques-
tion is whether this behavior is generic, extending to other
bunch shapes and wake potentials. Given the importance
of this problem the author chose to undertake a fairly sys-
tematic simulation campaign.
The simulations used the code TRANFT [8]. Only single

bunch phenomena are considered so the transverse voltage
kick is given by

Vx(x, t) =

τb∫
−τb

[xWd(τ)Ib(t− τ)−Wx(τ)Dx(t− τ)] dτ,

(2)
where τb is the full bunch length, Wd(τ) is the detuning
wake [9, 10, 11], Wx(τ) is the usual transverse wake po-
tential, andDx(t) is the instantaneous dipole density. Note
that Dx(t) is the product of the instantaneous current and
the instantaneous value of x. For space charge

Wd(τ) =
Z0�

2πβ2γ2a2 δ(τ)

where Z0 = 377Ω, � is the distance the beam travels be-
tween updates, β = v/c, γ = 1/

√
1− β2, a = 2σx is the

radius of a uniform equivalent beam. The wake potential
from space charge isWx(τ) = Wd(τ)(1− a2/b2) where b
is the radius of the beam pipe. For the work here I approx-
imate a/b = 0. For numerical implementation the delta
functions are replaced by gaussians of width στ and the
calculations are done on grids with spacing <∼στ/5. Two
different bunch shapes were used, a square bunch of full
width 12 ns at base and a smooth bunch with current profile
I(t) = Ipeak(1− t2/τ2)3.5 with τ = 6 ns. Three different
wake potentials were studied and are shown in Figure 2.
Several simulations were run using ∼ 105 turns, ∼ 105

macroparticles and 19 space charge kicks per betatron os-
cillation. The dependence of the wake strength versus
space charge tune shift is summarized in Figure 3. The
two red curves show the threshold for the step wake ( red
curve in Fig 2) versus space charge tune shift in units of
synchrotron tune. The curve starting at +1 in Figure 3 cor-
responds to a non-passive wake that requires an amplifier.
The red curve starting at −1 corresponds to the wake po-
tential of a long matched stripline. ForΔQsc < 3Qs space
charge stabilizes the beam. Figure 4 shows the growth rate
versus wake strength for the step wake with a smooth bunch
for ΔQsc = 6Qs. The threshold wake potential is larger
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Figure 2: Wake potentials used in the simulations. The
magnitudes are in the same ratio as the threshold values for
the smooth bunch
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Figure 3: Threshold values of the wake potential scaled
by the magnitude at threshold without space charge versus
space charge tune shift.

than for no space charge, but significanctly smaller than the
threshold forΔQsc = 3Qs. Note that doubling the number
of macroparticles has little effect. The dark blue and black
curves in Figure 3 show thresholds for square bunches in
linear RF and square well, respectively. For both these
space charge stabilizes the beam, but the improvement for
the square bunch in the linear RF show signs of turning
over. The green and magenta curves show the thresholds
for smooth and square bunches with the green resonator
wake in Figure 2. There is some small improvement for
small space charge tune shifts but things turn over quickly
and thresholds are soon smaller than without space charge.
The light blue curve is for the smooth bunch with the high
frequency wake; the dark blue curve in Figure 2. For this
wakefield space charge always reduces stability.
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Figure 4: Growth rate versus wake strength for a step wake
with a smooth bunch forΔQsc = 6Qs. Results for 125,000
and 283,000 macroparticles are shown. Growth rates for
125k particles and no space charge are shown for compari-
son.

Some of the results in Figure 3 are in qualitative agree-
ment with Figure 7 in [3]. For space charge tune shifts
that are not too big, space charge stabilizes the fast head
tail instability. However for larger tune shifts space charge
destabilizes the beam. The earlier work [2] stressed single
sign wakes like the red, blue and black curves in Figure 3.
For these parameter regimes space charge is more consis-
tently stabilizing. However, the growth rate measurements
in Figure 4 are compelling. The stabilizing effect of space
charge is not monotonic with the size of ΔQsc, even for
single sign wakes. Also, from Figure 1 it is clear that
the coupling leading to instability can occur between the
0 and -1 synchrobetatron sidebands. The coupling is not
limited to the positive sidebands as considered in [3] and
[6]. To explore which modes couple more fully consider
Figure 5. For a resonator wake (green curve in Fig 2) and a
12ns hollow bunch, the mode coupling occurs between the
m = −3 and m = −4 synchrobetatron sidebands. Figure
6 shows the comparable set of curves for the high frequency
resonator wake. In this case the coupling occurs between
the m = −7 and m = −8 synchrobetatron sidebands.
The threshold wake for the high frequency resonater is in-
creased for the hollow bunch, which is opposite to the be-
havior of the light blue curve in Figure 3. This means that
the hollow bunch model overestimates the benefits of space
charge and this model cannot be relied on for design esti-
mates. At this point it appears there is no substitute for
extensive simulations.
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Figure 5: Real part of eigenvalues for the hollow bunch
in a square longitudinal well versus resonator wake (green
curve in Figure 2) divided by absolute value of wake at
threshold without space charge. The space charge tune shift
is ΔQsc = 4Qs.
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Figure 6: Real part of eigenvalues for the hollow bunch in
a square longitudinal well versus high frequency resonator
wake ( blue curve in Figure 2) divided by absolute value of
wake at threshold without space charge. The space charge
tune shift is ΔQsc = 4Qs.
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