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Abstract 
In applying mode expansion to solve the CSR 

impedance for a section of toroidal vacuum chamber with 
rectangular cross section, we identify the eigenvalue 
problem for the radial eigenmodes which is different from 
that for a cylindrical structure. In this paper, we present 
the general expressions of the radial eigenmodes, and 
discuss the properties of the eigenvalues on the basis of 
the Sturm-Liouville theory.  

INTRODUCTION 
The studies of coherent synchrotron radiation (CSR) 

induced impedances or wakefields are important for the 
generation and transport of high-brightness electron 
beams in the designs of modern accelerators. These 
studies require solving the electromagnetic fields 
generated by a short bunch moving from (to) a straight 
path to (from) a section of a circular orbit, bounded by 
straight waveguides connected with a toroidal vaccum 
chamber. The impedance problem was thoroughly 
analyzed earlier [1] for a perfect ring orbit in a toroidal 
waveguide with rectangular cross section by solving the 
inhomogeneous Helmholtz equations. Recently much 
progresses has been made in solving the parabolic field 
equations as an approximation to the Helmholtz equations 
[2-5]. These approaches are applied to extend the 
impedance calculation for a circular toroidal waveguide to 
more general geometries involving sections of toroidal 
chamber connected to straight waveguides, by mode 
expansion [2] or by numerically solving the parabolic 
equations using meshes [5]. 

In our study, instead of solving the parabolic equations, 
we carry out mode expansion by directly using eigen-
modes of the Helmholtz equation with radial boundary 
conditions for the section of toroidal waveguide.  As the 
first part of this study, in this paper we investigate the 
properties of these radial eigenmodes. We will show that 
in using the method of separation of variables for the 
homogeneous Helmholz equation, one encounters the 
situation where the eigenvalue problem for the Bessel 
equation associated with the radial variable is different 
from that derived for a cylindrical structure. In the 
following sections, we will develop basic equations and 
identify the eigenvalue problem for the radial mode. We 
will then present the general expression for the 
eigenfunctions, and discuss the properties of the 
eigenvalues based on the Sturm-Liouvilles theory for self-
adjoint ODE. An approximate analytical expression for 
the eigenvalues is also presented.

 BASIC EQUATIONS 
Following the analysis in Ref. [1], we need to solve the 

inhomogeneous wave equations for  and  in the 
toroidal waveguide,  

 
     (1) 

 
      (2) 

 
The section of toroidal waveguide is bounded by the 
upper and lower walls at  as well as by the inner 
and outer walls with radius  and   . The design 
orbit for the electron beam inside the toroidal chamber 
has radius , and  is the longitudinal coordinate. The 
boundary conditions on the perfect conducting waveguide 
walls are 

 
   ,    ,  

 
       ,   
 
The other field components,  can be 
obtained in terms of   and . The above wave 
equations can be solved by applying Fourier expansions 

 

to Eqs. (1) and (2), which incorporate boundary 
conditions at by setting  This 
gives rise to inhomogeneous Helmholtz equations for 

 and , the solutions of which can 
be written as the sum of particular solutions involving 
source terms and solutions for the homogeneous 
Helmholtz equation. In this study we are particularly in-
terested in the homogeneous Helmholtz equation, which 
has the form  
 
                                (3) 
 
for  and   or 

. 
   For a circular toroidal waveguide [1],  satisfies the  
periodic condition  as well as  the 
boundary conditions 

 ___________________________________________  
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                (for             (4) 
 
                (for        (5)      
 
The periodic condition in  allows one to expand  in 
Eq. (3)  
 
                ,  
 
where   is the solution of the Bessel equation 
 

                               (6)    

 
With the cross product of Bessel functions  
 
           (7) 

   (8) 
       (9)  

 
and the synchronous condition for  re-
presenting the velocity of the electron beam, one finds 
resonance conditions for  when 
 
                     (for   
                      (for    

 
    For general geometries involving a section of toroidal 
waveguide connected to straight waveguides, the periodic 
condition in  no longer apply. We can then solve the 
problem by mode expansion for each longitudinal section 
of waveguide and matching fields at the interfaces. The 
main focus of this paper is to understand the properties of 
the radial eigenmodes for a section of toroidal waveguide 
with arbitrary longitudinal range , as needed 
for the follow-up mode expansion studies. 
   With separation of variables   , and 
for , one can write Eq. (3) as 
 

. 
 
This results in a Bessel equation for   
  
                                       (10) 
 
and an oscillator equation for  
 
    . 
 
Here for the general discussion of the properties of Eq. 
(3), we omit the label  for ,  and . The constants 

are the eigenvalues of Eq. (10), as a result 
of the boundary conditions of  at  and :   
 

                  (for               (11) 
           (for              (12) 
 

One can show that the solution for Eqs. (10) and (11) is 
 
                                                   (13)  
 
with the eigenvalues    such that =0. 
Similarly the solution for Eqs. (10) and (12) is 
 
                                      (14) 
 
with the eigenvalues    such that =0. 
The general solution of  for , 
which satisfies Eqs. (3) and (4), is 
 

,  
    
and the general solution for , which 
satisfies Eqs. (3) and (5), is 
 

. 
 
Note that unlike the usual eigenvalue problem for a 
cylindrical structure, such as a pillbox cavity, where the 
orders of Bessel functions are given while the eigenvalues 
reside in the arguments of the Bessel function, here for 
the radial eigenmodes in a section of toroidal waveguide, 
things are twisted around in Eqs. (13) and (14), where the 
arguments of the Bessel function are given while the 
eigenvalues reside in the order of the Bessel functions. 

DISCUSSION OF THE
 EIGENVALUE

   
PROBLEM 

    Since our new eigenvalue problem for the Bessel 
equation (Eqs. (10)-(12)) is different from that in most 
applications of Bessel equations, we need to go back to 
the fundamental theory on the Sturm-Liouville equation 
and demonstrate where the difference takes place and 
what is the implication of these differences to our 
eigenvalue properties. 
   Recall that the Sturm-Liouville equation takes the form  
 

             (15) 
 
for  over a finite interval . Here  are 
real continuous functions, with  being positive 
definite on the interval. The boundary conditions are 
 
         (16) 
 
for arbitrary real constants  and . The Sturm-
Liouville theory [6] proves that the eigenvalues  are a 
set of real discrete numbers which has a lower limit and 
increases to infinity without bound,  
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                                     (17) 
 
The corresponding eigenfunctions are oscillatory func-
tions which are orthorgonoal to each other, and form a 
complete set in the space of piecewise smooth functions 
on the interval  The oscillation is more rapid for 
larger eigenvalues. The orthogonality of the eigenmodes 
associated with eigenvalues  and  is given by 
 
               ,                       (18) 

 
for the normalization factor . The Rayleigh quotient  
 

                          (19) 

 
ensures that all  are positive definite when  as 
well as when the boundary conditions have the forms of 
Eqs. (11) or (12). 
   The usual eigenvalue problem for the Bessel equation 
 

, 
 

with boundary conditions Eqs. (11) or (12), is often 
derived from Helmholtz equation for a cylindrical 
structure. It has the Sturm-Liouville coefficient functions     
 
        .        (20) 
 
For a given , one has   The 
task is to find  and the coefficients  and  so as 
to meet the boundary conditions at   and .  
    In contrast, our new eigenvalue problem for a toroidal 
waveguide is given by the boundary conditions Eqs. (11) 
or (12) for Eq. (10), or,  
 
            .                           (21) 

 
The coefficient functions are  
 
  , .          (22) 
 
Note that  in Eq. (22) switch role from 
those in Eq. (20), and in addition we now have   
for the case   Consequently, we find that the 
Sturm-Liouville theory on the real and discrete aspects of 
eigenvalues and on the orthogonal and complete aspects 
for eigenfunctions still hold for the toroidal waveguide 
case.  However, from the Rayleigh quotient in Eq. (19), 
the possibility of  in Eq. (22) no longer guarantees 
the positiveness of the eigenvalues. This is consistent with 
the observation that when we substitute  to Eq. 
(17), we get  
       
                       <                               (23) 
 

where the upper bound can be either positive or 
negative, depending on the value of  Also unlike the 
case for a cylindrical structure where the weight func-
tion  is used for the orthogonality condition in 
Eq. (18), the weight function for the toroidal waveguide 
becomes  instead.  
    Remark that when  , the orders of Bessel 
functions in Eqs. (7)-(9) are purely imaginary. 
Nonetheless, as we have proved, the eigenfunctions in 
Eqs. (13) and (14) are real functions of  .  For 

it can be shown that the Bessel functions, with real or 
imaginary order, can be well approximated by the 
dominant terms of the Olver expansions [7] in terms of 
the Airy functions. Under this approximation, the eigen-
values in Eqs. (13) and (14) are nearly the same,   
for all   and 
 

                                      (24) 
 
Here despite the similarity of the radial eigenvalues in Eq. 
(24) with those for a straight rectangular waveguide, the 
radial eigenfunctions behave very differently from the 
sinusoidal eigenfunctions in the latter case, especially for  
those with lower mode indices.  More discussions on the 
asymptotic expressions of  can be found in Ref. [9].   
   For some example geometries, our studies show that the 
eigenvalues in Eq. (24), as well as the eigenfunctions for 
the radial eigenmodes in Eqs. (13) and (14), agree very 
well with direct numerical solutions of Eqs. (10)-(12). 
These numerical solutions are obtained using the ODE 
solver extended from the one provided by Warnock [8]. 
The results obtained in this paper can be further applied to 
study the resonance behaviour of the CSR impedance for 
general geometries involving sections of toroidal wave-
guide. 
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