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Abstract 
The wake function of an accelerator device appears to 

have a constant term if the geometry of the device is 
asymmetric or when the beam passes off axis in a 
symmetric geometry. Its contribution can be significant 
and has to be taken into account. In this paper a 
generalized definition of the impedance/wake is presented 
to take into account also this constant term. An example 
of a device where the constant term appears is analyzed. 
Moreover, the impact of a constant wake on the beam 
dynamics is discussed and illustrated by a HEADTAIL 
simulation.  

INTRODUCTION 
The wake functions can be expanded into a power 

series in the offset of source and test particle [1]. Usually 
the generalized transverse wakes are written as a sum of a 
driving and a detuning term [2]: 
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where  00 y,x  and  y,x  define respectively the 
transverse offset of source and test particle and z is the 
distance between the two (z positive means that we are 
looking at the effect on a test particle that is at a distance 
z behind the source particle). In this approximation the 

knowledge of the four frequency dependent terms driv
xW , 

det
xW , driv

yW , det
yW  fully characterizes the impedance of 

the device. 

A NEW GENERALIZED FORMALISM 
The above definitions hold only for a device with 

left/right and top/bottom symmetry and centered beam. 
Assuming now that a transverse effect is also possible 
between the source and test particles on their nominal 
orbits: 
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and Eq.(1) has to be rewritten as: 
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where  00 y,x  and  y,x  are the offsets with respect to 
the nominal orbit and driving and detuning wakes must be 
defined with respect to it: 
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Similarly, we can apply the same concept to define the 
generalized impedances, which are the Fourier transforms 
of the wakes: 
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What we call the “generalized (total) wake field” 
physically represents the wake calculated off axis 
generated by a source beam that is off axis by the same 
amount. 

3-D SIMULATIONS: AN EXAMPLE OF 
APPLICATION 

 Using one of the standard outputs of CST PS [3] we 
can simulate the longitudinal and transverse wake 
potentials.  

The CST PS wake field solver allows defining the 
position of the source beam (it is assumed to have only 
longitudinal size) and that of the test particle (observation 
point). Therefore, we can single out the different 
contributions.  

To simulate the constant wake (Eq. 2) both the source 
bunch and the test particle have to be placed on the 
nominal orbit. To simulate the driving impedance, we 
only need to displace the source beam and calculate the 
wake potential on axis. The result has to be normalized 
using Eq. (4). To simulate the detuning impedance, only 
the test particle needs to be displaced. As for the driving, 
the wake has to be normalized using Eq. (4). Offsetting 
both the source beam and the test particle, it is possible to 
simulate the generalized impedance and, therefore, verify 
the Eq. (3)—thereby checking if the abovementioned 
assumptions are valid. In structures with left/right and 
top/bottom symmetries the constant terms are exactly 
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zero. In order to show the importance of the constant term 
we will analyze an example of interest where the 
symmetry is broken. 

C-shaped Kicker Magnets 
An example of asymmetric structure of interest is the 

SPS C-shaped kicker magnet sketched in Fig. 1. This 
structure is not symmetric with respect to the plane yz. It 
is important to underline that the constant term is 
independent of the offset. In order to compare its 
contribution with respect to the driving term it is possible 
to define a threshold displacement below which the 
constant term is larger than the driving one: 

driv
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W
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x     (6) 

Figure 2 shows thx as function of the frequency for an 
SPS MKP module. From the plot it is evident that the 
constant term has a very strong impact at low frequencies 
while at high frequency (above few hundred MHz) its 
contribution becomes negligible. Figure 3 shows all the 
wake contributions of the C-shaped kicker magnet. The 
different terms were singled out following the procedure 
described in the previous section.  

Figure 1: Simplified model of a kicker magnet: Vacuum 
in blue, ferrite in light green and Perfect Electric 
Conductor (PEC) in gray. 

Figure 2: Horizontal offset of threshold for the real part of 
the horizontal driving impedance of an SPS MKP 
module. 

 
Figure 3: CST 3-D Electro-Magnetic simulations of the 
horizontal (full lines) and vertical (dashed lines) wake 
potentials for an SPS-MKP kicker magnet using a 
Gaussian bunch profile with an rms bunch length of 1.5 
cm. The constant term is in blue, the driving terms in 
green and the detuning in red.  

Constant Term Due to Offset Beam 
A constant term also appears when the beam passes off 

axis in a symmetric geometry. In general we can define 
the constant term as the transverse impedance when both 
source and test particle are on the nominal beam axis. If 
the nominal beam axis is in the geometrical centre of the 
structure the constant term appears only for asymmetric 
geometry.  

Effect of the Constant Terms on the Beam 
Dynamics 

To study the impact of the constant wakefield on the 
beam dynamics, we write down the Hamiltonian for the 
betatron motion under the influence of a purely constant 
wakefield as defined in Eq. (2) following the conventions 
of [4] as 
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where 0r  is the classical particle radius and 0T is the 

revolution period. Equation (7) resembles the 
Hamiltonian of a shifted harmonic oscillator with shift in 
the neutral position and in the energy. 

It is important to note that the constant term in Eq. (7) 
is written in terms of the wake function  zA  as 
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where   is the line density of the bunch. The constant 
wakefield term corresponds to an additional dipole field 
and leads to a slice dependent orbit distortion. For a given 
slice this distortion depends on the zeroth statistical 
moment of the preceding slices and as a result, each slice 
will follow a different closed orbit. This may be regarded 
as the transverse equivalent of the potential well 
distortion found in the longitudinal plane.  

When a beam is injected on the design orbit, slices are 
given an initial kick with respect to the distorted orbit. 
This causes slices along the bunch to rotate around the 
distorted neutral positions. In transverse phase space, 
these slices are strongly offset from the centre of rotation 
causing them to sweep an enlarged area. 
 

 
Figure 4: Top: the bunch is represented as the uniform 
coloured tube. The enlarged phase space volume swept by 
the bunch is bordered by the grey transparent surface. The 
distorted neutral positions follow the axis of this phase 
space volume. Bottom: The same representation of the 
bunch obtained from a HEADTAIL multi-particle 
simulation. The axes map as zz,'xy,xx  . 

Figure 4 compares the horizontal phase spaces from an 
analytical calculation using the Hamiltonian in Eq. (7) (in 
order to simplify the calculation we have assumed 

   zAzA  and we have used a Gaussian longitudinal 
bunch profile) and from a HEADTAIL [5] simulation of 
an SPS beam using only the constant wakefield shown in 
Fig. 3 in order to reveal the effects resulting purely from 
this term.  

Particles towards the tail of the bunch are performing 
oscillations around a distorted orbit; which results in the 
bunch having a flapping tail. The transverse phase space 
looks increased as the slices towards the tail of the bunch 
are strongly offset.  

As synchrotron motion takes place, provided that

 s , for each slice the neutral position changes 

adiabatically as particles move longitudinally along the 
bunch. Therefore, the action for all particles in a slice is 
preserved while its centre of rotation shifts from the 
neutral position at the tail towards the neutral position at 
the head and vice versa. Thus, the bunch changes from 
having a flapping tail to having a flapping head and back 
within one synchrotron period. The emittance oscillates 
with the betatron frequency together with an additional 
modulation at the synchrotron frequency. 

CONCLUSION 
A new generalized formalism accounting also for the 

constant term using the same sets of simulation described 
in [6] has been presented. The impedance behavior of an 
SPS-MKP kicker magnet (see Fig. 1) has been 
investigated to quantify the effect of the constant term 
(see Figs. 2 and 3). The impact of the constant term on the 
beam dynamics has been formalized and identified as the 
transverse equivalent of the potential well distortion. The 
resulting effect has been illustrated by calculation, as well 
as by a HEADTAIL simulation. 
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