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Abstract 
The kinetic distribution function was found allowed to 

describe the bunch dynamics in a selfconsistent manner 
([1]-[3]) in the case of bunch formed as rotation ellipsoid 
with uniform charge density. 

SPHERICAL BUNCH 
Let us consider a bunch with spherical symmetry, 

coordinate system connecting with the bunch center. For 
the simplicity let consider that there are no external fields. 
In spherical coordinates , ,r   charged particle motion 

equations may be written:  
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Here ,M L are motion integrals followed from character 

of task symmetry, M - projection of whole momentum 

on the axis z , L  total momentum in the second power, 
m - particle mass.  Equation (3) is correct only in case of 
sphere with uniform charge density, otherwise a  depends 
not only on ,t  but on .r  Using the relation  
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where e -charge, n -particle density, one 

can obtain for  a t : 

                          2 3/ ,a t e N mR t                        (4) 

here N is the total number of particles in the bunch, 

 R t - the bunch radius time-dependent.  

For complete description of the bunch it is necessary to 
find three motion integrals. The 3rd integral may be found 
from (3), which describes the particle radial motion. 

Let introduce 
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 2/L m  .  It is easy to obtain, that / 0,dI dt  if  

           
2
0

3
.R a t R

R t


                                          (6) 

Distribution function for our bunch may be written as a 
function of motion integrals. Then calculating the particle 

density rn dp dp dp    (where 

, , sinrp mr p mr p mr       ), let replace 

integration variables to 2, / , .I L m M   So for the 

density we obtain: 
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Limits of integration in (7) are determined in according 
with requirement for the expressions under integral signs 
to be more or equal to zero.  

For density to be independent on  distribution the 

function   must be independent on M . So n  looks as 

 
  

2 2
2
02 2

2
2
0 2

2

2 2 2 2 2 2
0 0

,
.

4 / /

r r
I

R R

r

R

d Im
n dI

r R r R I r R

 
    



 


 
 

                                                                                      (8) 
It should be noted that if we take   as 

   1 2I      , it leads to physically unreal result 

– negative density. 
First found in [4], solution for   describing real 

physical conditions looks as:  
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Here  x - Heaviside function. According to (8) and 

(9) one can obtain for density: 
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In (10) upper limit of integration must be more than lower 
limit. Finally for density we obtain   
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ELLIPSOIDAL BUNCH 
Spherical model is unsuitable for description of bunch 

behavior in external fields due to spherical symmetry 
absence. So the bunch model should be built in case of 
axial symmetry. The motion equations in cylindrical 
coordinates are 
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Here 2M rp mr    - motion equation integral, r - 

distance between particle position and axis, 0z z   - 

projection of distance between particle and bunch center 
on axis z .  

Equations (12) are correct for constant density bunch 
and permit to use the two motion integrals: 

 
    

    

2 2
2 2 2

1 2 2

2
2 2

2 2

,

.

R r
I R t r R t r

r R

I R t R t
R


  



   


     







                (13) 

Here    ,R t R t  - transverse and longitudinal bunch 

sizes,  ,  - transverse and longitudinal emittances,  

M

m
  .  Invariants 1 2,I I  are constant, if ,R R   

satisfy to the equations: 
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The density z rn fdp dp dp    

(where , , /z rp mz p mr p mr M r      ) may 

be represented by means of motion integrals as follows: 
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   Function 0   must satisfy to relation    
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i.e.   must result in  

uniform density inside the bunch and must be equal to 
zero outside the bunch. 

Let consider the next expression for  :     
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Integrating with respect to 1I  and taking into account 

(16),   finally for the density we obtain: 
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Note that for a long time to build physically reasonable 
distribution function resulting in uniform density inside 
the ellipsoidal bunch was considered impossible ([3]).  
Such function was first built in [4].   

SEMIAXIS EQUATIONS 
Potential of the ellipsoid with uniform charge density in 

vacuum is performed by expression ([5]): 
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From (18) one can obtain relations for own fields. For the 

case R R  we can obtain: 
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  a t  and  a t  take part in the motion equations and 

in the equations for the semiaxes ,R R   (see (14)). 
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Further, let suppose there is an external field in the region 

too, such as 0.extdivE 


 In the paraxial approximation 
external field potential may be performed by the next 

way:    
2

0 04
ext r

z z     . Let use paraxial 

approximation for the external field force too. So in (14) 

 a t  must be replaced by the expression 
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a t z t

m
  , and  a t  respectively by 
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e
a t z t

m   .  If there is the external field 

growth, transverse direction focusing appears, and on the 
contrary, the phase variation increases, e. g. longitudinal 
defocusing. 
   The generalization to the case of the bunch motion in 
weakly nonuniform magnetic field is relatively simple. In 

the left part of equation for R  the next term must be 

added:   22 /R eB t mc . Here     B t B z t is 

external stationary magnetic field. So equation for R  is 

not changed, and the longitudinal magnetic field changes 
the longitudinal bunch size implicitly by changing of the 
transverse size. 

ZERO LONGITUDINAL EMITTANCE 
Eq. (16) does not allow to describe the bunch with zero 

longitudinal emittance due to  placed in denominator. 

So in this section another, rather simple method of 
distribution function construction will be considered, 
resulting in uniform charge density of ellipsoidal bunch.    

In case of 0  (14) is followed by conclusion that 

2I  is a linear invariant in the second power. If 
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Distribution function will be represented in the form of 
two  - functions product: 
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1I is determined in (13). After integration with respect to 

the   we will obtain one  - function with argument 
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After integration with respect to the  r  and   we obtain 

for the density 
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which yields the following expression:  
2

4
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N
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
. 

Note that the model constructed by the same method 
can describe the bunch without axial symmetry[6].  

Combined usage of the linear and square invariants for 
3D-bunches was considered in [7].  
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