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Abstract
A future application of linear accelerators (linacs) in 

Nuclear Energy is Accelerator Driven Subcritical Systems 
(ADSS, or Accelerator Driven Systems, ADS). ADS is a 
revolutionary concept where a proton linac produces 
energy from transmutation of conventional radioactive 
waste[1]. The major challenge in realizing this concept is 
combining high efficiency and high reliability in a proton 
accelerator. High reliability demands for automated 
controls and fast online repairs in the accelerator. In this 
paper we talk about how fast beam tuning can be 
achieved by automated controls. We develop beam model
using State Space Method so that traditional control 
techniques can be applied. Further we discuss the use of 

Minimization Technique for actual beam control.

CONTROLS FOR ADS
Importance

Any kind of failure, or repair, or magnet drifts in an 
accelerator cause beam interruptions, which is one of the 
major concern in Accelerator Driven Systems. The high 
intensity 1 MW beam in ADS strikes a small area~1cm2

on the Spallation Target (which produces external 
neutrons for fission). Frequent beam interruptions leads to 
alternative cooling and heating of the spot, leading to 
thermal stress on the spallation target. This damages the 
Spallation target, and eventually cause harm to the Fission 
Target as well. Replacing the targets is extremely 
expensive-and requires shutting down the plant for a 
considerable period. This means, ADS can take a bunch
of tiny interruptions (<2 seconds) or a very few medium 
or large interruptions. A large number of medium beam 
interruptions of greater than 2 seconds give rise to thermal 
shock on the targets. Therefore, we need a very fast 
controller that can automatically bring the beam back to 
its nominal when it suffers a deviation due to any
abnormality in the system within this time scale. In this 
paper, we discuss the methodologies that can be used to 
model the beam so that it can be used eventually by a 
traditional controller to implement this objective.

Present Techniques
In Tevatron, Fermilab’s main accelerator, beam tuning 

was done manually. Though the total emittance of the 
beam is constant (almost), and with variation of the 
magnet current, the beam size in X and Y varies. Beam 
emittance can be measured by observing:

Lateral profile
Longitudinal profile
Beam intensity

A Laser scanner, as shown in Figure 1, and a pick up 
coil are used for this purpose. The data from the laser 
scan is then used to tune the magnets manually which 
help to bend the particles to the beam line. This can take 
several hours to days.

Further accelerators are also provided the beam 
position monitors or BPMs that gives the position of the 
centroid of the beam. Most accelerators have a much 
larger number of BPMs and only a few laser scanners.

Figure 1: Laser Scanner for measuring beam profile.

Some work on automated feedback control system has 
been done in NUMI for maintaining desired trajectory. 
Controls systems for maintaining beam trajectory using 
BPMs is not uncommon. Our objective is to design a 
control technique maintain the beam size and make sure, 
at no point the beam blows up and touches the cavity 
walls.

BEAM MODELING
State Space Method of Beam Representation

Before applying controls technique, a beam model is 
necessary. We propose to model the beam in a form 
widely prevalent in the controls field: State Space 
Method. We define state of dynamic system as the 
smallest set of linearly independent variables, called the 
“state variables” such that the knowledge of these 
variable at = , together with the input at 
completely determines the behaviour of the system for 
any time . State space method uses matrix 
representation, and in time domain can be expressed in 
the following form( ) = ( ) + ( ) in continuous time domain  ( + 1) = ( ) + ( ) in discrete domain 
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where, x is called the state vector, u is the input or control 
vector, A is called the plant matrix, and B is the input or 
control matrix. 

To model the beam, we at first simulated a small 
section of a high intensity proton linac using TraceWin, a 
software for accelerator simulation. The segment consists 
of 5 quadrapoles along with two gaps, and drift regions
between the magnets. We intend to represent the beam in 
form of equation (2),( + 1) = ( ) + ( ) 
where is the plant matrix and is the control matrix. 
Note we use rather than the more conventional to 
avoid confusion with the coordinate.Here k denotes the 
position index corresponding to z. For controls, the 
dynamics of the beam is too fast with time, so we are first 
interested in the variation with position and hence use the 
discrete state space form [2].

In the first test, we turn off all the magnet currents. 
Therefore, = 0. We take as( ) = ( )( )
where , are the beam size in the and directions, 
and is the index for position along the beam direction, 
i.e. . We then have Excel fit the 2 × 2 matrix and the 
initial value, (0). The resulting fit is quite poor, as seen 
in Figure 2.

The problem can be understood as follows. With = 0( ) = ( 1) = ( 2) = = (0)
With magnets off, physically there is no source of 

coupling between  and so should be diagonal. 
Then ( ) = ( ) (0) ( ) = ( ) (0)

i.e., the growth is exponential. Although the fit is 
somewhat improved by allowing to be non-diagonal.

4D Linear Model, no Magnet
To allow a wider range of functions, in particular 

linear, we expanded to a 4-vector

( ) = ( )( )( )( )
where , are the rate of change of , . This allows 
linear result, for instance using

= = 1 1 0 00 1 0 00 0 1 10 0 0 1
yields ( ) = ( 1) = = (0)( ) = ( 1) + ( ) = (0) + (0)
and similarly for y.

Keeping fixed at and allowing Excel to fit only (0) gives a line fit as seen below. The Bx response is 
showed in Figure 3, and that of By was similar. Because 
of the non-linear behaviour at the beginning (where the 
beam is converging), and the kink near 1.3m (due to an 
acceleration cavity), the fit is not great. Allowing Excel to 
fit (now 4 × 4), as well as (0), we got a better fit.

Figure 3: 4D linear model, with zero current.

4D Linear Model, with Magnets
Next we work on the case with magnets at nominal 

settings. To temporarily bypass how to set and , we 
start of assuming we can perfectly model regions with 
magnets and accelerating gaps. We implement this by 
assigning ( ) = ( )
everywhere except drift regions, where ( ) is the data.

Note if the model is correct, must be independent of 
magnet (control) settings. Using the matrix fit to the 
magnets-off data to nominal magnet settings gives the 
following; using = gives essentially identical 
results. We show the By results in Figure 4, to 
demonstrate the failure of the model in the region of the 
focal point. Refitting in excel though gave some 
improvement, but that same A failed to work in the zero 
current situation.

Figure 2: 2D model with zero current.
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Figure 4: 4D Linear Model with magnets.

Non-linear Model
We found that a linear model works well for magnet-

off data, but poorly for magnet-on data. Furthermore, the 
optimal matrix is different for the two cases. We 
therefore turn to non-linear modeling.

In this model, we are going to do an addition in 
quadrature. +

We start with a linear model like before, except label 
the components instead of to distinguish the linear 
aspect ( ) = ( 1)

To get final beam size estimates, we next add a 
constant to it: ( ) = ( )

We do this because we note that, except at a focal 
point, the beam between magnets and gaps shows linear 
growth or shrinkage. At a focal point the linear term 
would go to zero and then flip sign , that is the size would 
become negative. We want to turn this into something 
which is always positive, and has a minimum value. This 
is one fairly simple way to do that.

Using = and fitting only gave good fit to both 
magnet-off and nominal data. In Figure 4 we show the By
results again, and how the focal point response is now 
fixed.

Figure 5: Non Linear Model with magnets.

So far we were only modelling the drift regions in our 
linac section. We now try to introduce the effect of the 
magnet and model the beam throughout the linac. In this 
case we find that our B is varying with k, and can be 

expressed as but we define B as a 4x1 vector, having 
elements:

( ) = 00
So we only apply correction to the slopes. The B 

computed is a function of k, that it is different for each k. 
u is taken as a scalar, that is the magnet current at that 
position k. So,( ) =      ( ) = 0  =

CHI –SQUARE MINIMIZATION
So far we only talked about beam modelling, but it is 

useful to mention some of the control algorithms we 
applied to bring the beam back to normal after it blows up 
due to magnet drifts. We consider in this example 
multiple magnets suffered slow drifts over the time. In 
this case we minimize

= +  
is the measured current for magnet , is the nominal 

current for magnet , is the expected uncertainty in , is a measured beam property (size), is the 
nominal value of , is the expected uncertainty in .

We get the following result in Figure 6 where the blue 
is the nominal, red is the beam due to magnet drift and 
green is the corrected beam by chi-square method. 

Figure 5: Beam Control using Chi Square Minimization.
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